Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Computer-aided engineering (CAE) models play a pivotal role in predicting crashworthiness of vehicle designs. While CAE models continue to advance in fidelity and accuracy, an inherent discrepancy between CAE model predictions and the responses of physical tests remains inevitable, due to assumptions or simplifications made in physics-based CAE models. Machine learning (ML) models have shown promising potential in improving the prediction accuracy of CAE models. Nevertheless, the scarcity of vehicle crash data poses a significant challenge to the training of such ML models. This paper aims to overcome these challenges by fusing multiple data sources from two different types of vehicles. More specifically, the cycle-consistent generative adversarial neural networks (CycleGAN) are first employed to translate features of time-series test data from one domain (the first vehicle type) to another (the second vehicle type) using cycle consistency loss. Such a translation allows for the generation of synthetic crash test data for the second vehicle type by leveraging existing tests from both the first and second vehicle types. In parallel, an initial temporal convolutional network (TCN) model is trained using CAE simulation data and physical test data of the first vehicle type. This pre-trained TCN model is then fine-tuned using three sources of data from the second vehicle type, namely the CAE data, test data, and the augmented virtual test data generated using CycleGAN. Through this data fusion, the crashworthiness prediction accuracy of the second vehicle type can be improved. The essence of the proposed method involves domain translation across two different yet potentially interrelated vehicle types. This is accomplished by leveraging insights gained from the first vehicle type through transfer learning, coupled with data augmentation techniques. The proposed method is demonstrated by a real-world case study with a small-size SUV and a medium-size SUV. Results show substantial enhancement in the predictive performance of the medium-size SUV model.

References

1.
Ambrósio
,
J. A.
,
Pereira
,
M. F. S.
, and
da Silva
,
F. P.
,
2012
,
Crashworthiness of Transportation Systems: Structural Impact and Occupant Protection
,
Springer Science & Business Media
,
Troia, Portugal
.
2.
van Mierlo
,
C.
,
Burmberger
,
L.
,
Daub
,
M.
,
Duddeck
,
F.
,
Faes
,
M. G. R.
, and
Moens
,
D.
,
2022
, “
Interval Methods for Lack-of-Knowledge Uncertainty in Crash Analysis
,”
Mech. Syst. Signal Process.
,
168
(
1
), p.
108574
.
3.
Liao
,
X.
,
Li
,
Q.
,
Yang
,
X.
,
Li
,
W.
, and
Zhang
,
W.
,
2008
, “
A Two-Stage Multi-objective Optimisation of Vehicle Crashworthiness Under Frontal Impact
,”
Int. J. Crashworth.
,
13
(
3
), pp.
279
288
.
4.
Mohsenizadeh
,
S.
,
Alipour
,
R.
,
Rad
,
M. S.
,
Nejad
,
A. F.
, and
Ahmad
,
Z.
,
2015
, “
Crashworthiness Assessment of Auxetic Foam-Filled Tube Under Quasi-Static Axial Loading
,”
Mater. Des.
,
88
(
1
), pp.
258
268
.
5.
Noorsumar
,
G.
,
Rogovchenko
,
S.
,
Robbersmyr
,
K. G.
, and
Vysochinskiy
,
D.
,
2022
, “
Mathematical Models for Assessment of Vehicle Crashworthiness: A Review
,”
Int. J. Crashworth.
,
27
(
5
), pp.
1545
1559
.
6.
Paz
,
J.
,
Díaz
,
J.
,
Romera
,
L.
, and
Costas
,
M.
,
2014
, “
Crushing Analysis and Multi-objective Crashworthiness Optimization of GFRP Honeycomb-Filled Energy Absorption Devices
,”
Finite Elem. Anal. Des.
,
91
(
1
), pp.
30
39
.
7.
Baraldi
,
P.
,
Bonfanti
,
G.
, and
Zio
,
E.
,
2018
, “
Differential Evolution-Based Multi-objective Optimization for the Definition of a Health Indicator for Fault Diagnostics and Prognostics
,”
Mech. Syst. Signal Process.
,
102
(
1
), pp.
382
400
.
8.
Wang
,
D.
,
Xie
,
C.
, and
Wang
,
S.
,
2021
, “
An Adaptive RBF Neural Network–Based Multi-objective Optimization Method for Lightweight and Crashworthiness Design of Cab Floor Rails Using Fuzzy Subtractive Clustering Algorithm
,”
Struct. Multidiscipl. Optim.
,
63
(
2
), pp.
915
928
.
9.
Guida
,
M.
,
Manzoni
,
A.
,
Zuppardi
,
A.
,
Caputo
,
F.
,
Marulo
,
F.
, and
Luca
,
A. D.
,
2018
, “
Development of a Multibody System for Crashworthiness Certification of Aircraft Seat
,”
Multibody Syst. Dyn.
,
44
(
2
), pp.
191
221
.
10.
Ramancha
,
M. K.
,
Conte
,
J. P.
, and
Parno
,
M. D.
,
2022
, “
Accounting for Model Form Uncertainty in Bayesian Calibration of Linear Dynamic Systems
,”
Mech. Syst. Signal Process.
,
171
(
1
), p.
108871
.
11.
Zeng
,
J.
,
Todd
,
M. D.
, and
Hu
,
Z.
,
2023
, “
A Recursive Inference Method Based on Invertible Neural Network for Multi-level Model Updating Using Video Monitoring Data
,”
Mech. Syst. Signal Process.
,
203
(
1
), p.
110736
.
12.
Zeng
,
J.
,
Kim
,
Y. H.
, and
Qin
,
S.
,
2023
, “
Bayesian Model Updating for Structural Dynamic Applications Combing Differential Evolution Adaptive Metropolis and Kriging Model
,”
J. Struct. Eng.
,
149
(
6
), p.
04023070
.
13.
Bi
,
S.
,
Beer
,
M.
,
Cogan
,
S.
, and
Mottershead
,
J.
,
2023
, “
Stochastic Model Updating With Uncertainty Quantification: An Overview and Tutorial
,”
Mech. Syst. Signal Process.
,
204
(
1
), p.
110784
.
14.
Zeng
,
J.
,
Li
,
G.
,
Gao
,
Z.
,
Li
,
Y.
,
Sundararajan
,
S.
,
Barbat
,
S.
, and
Hu
,
Z.
,
2023
, “
Machine Learning Enabled Fusion of CAE Data and Test Data for Vehicle Crashworthiness Performance Evaluation by Analysis
,”
Struct. Multidiscipl. Optim.
,
66
(
4
), p.
96
.
15.
Zhan
,
Z.
,
Fu
,
Y.
, and
Yang
,
R.-J.
,
2014
, “
A Stochastic Bias Corrected Response Surface Method and Its Application to Reliability-Based Design Optimization
,”
SAE Int. J. Mater. Manuf.
,
7
(
2
), pp.
262
268
.
16.
Shi
,
L.
,
Yang
,
R.-J.
, and
Zhu
,
P.
,
2014
, “
An Adaptive Response Surface Method Using Bayesian Metric and Model Bias Correction Function
,”
ASME J. Mech. Des.
,
136
(
3
), p.
031005
.
17.
Shi
,
L.
, and
Lin
,
S.-P.
,
2016
, “
A New RBDO Method Using Adaptive Response Surface and First-Order Score Function for Crashworthiness Design
,”
Reliab. Eng. Syst. Saf.
,
156
(
1
), pp.
125
133
.
18.
Wang
,
X.
, and
Shi
,
L.
,
2014
, “
A New Metamodel Method Using Gaussian Process Based Bias Function for Vehicle Crashworthiness Design
,”
Int. J. Crashworth.
,
19
(
3
), pp.
311
321
.
19.
Aye
,
C. M.
,
Pholdee
,
N.
,
Yildiz
,
A. R.
,
Bureerat
,
S.
, and
Sait
,
S. M.
,
2019
, “
Multi-Surrogate-Assisted Metaheuristics for Crashworthiness Optimisation
,”
Int. J. Vehic. Des.
,
80
(
2/3/4
), pp.
223
240
.
20.
Shi
,
L.
,
Yang
,
R.-J.
, and
Zhu
,
P.
,
2012
, “
A Method for Selecting Surrogate Models in Crashworthiness Optimization
,”
Struct. Multidiscipl. Optim.
,
46
(
2
), pp.
159
170
.
21.
Bansal
,
M. A.
,
Sharma
,
D. R.
, and
Kathuria
,
D. M.
,
2022
, “
A Systematic Review on Data Scarcity Problem in Deep Learning: Solution and Applications
,”
ACM Comput. Surv. (CSUR)
,
54
(
10s
), pp.
1
29
.
22.
Zhang
,
Y.
,
Gong
,
Z.
,
Zhou
,
W.
,
Zhao
,
X.
,
Zheng
,
X.
, and
Yao
,
W.
,
2023
, “
Multi-fidelity Surrogate Modeling for Temperature Field Prediction Using Deep Convolution Neural Network
,”
Eng. Appl. Artif. Intell.
,
123
(
1
), p.
106354
.
23.
Shao
,
H.
,
Lin
,
J.
,
Zhang
,
L.
,
Galar
,
D.
, and
Kumar
,
U.
,
2021
, “
A Novel Approach of Multisensory Fusion to Collaborative Fault Diagnosis in Maintenance
,”
Inf. Fus.
,
74
(
1
), pp.
65
76
.
24.
Gong
,
R.
,
Li
,
J.
, and
Wang
,
C.
,
2022
, “
Remaining Useful Life Prediction Based on Multisensor Fusion and Attention TCN-BiGRU Model
,”
IEEE Sens. J.
,
22
(
21
), pp.
21101
21110
.
25.
Saadallah
,
A.
,
Finkeldey
,
F.
,
Buß
,
J.
,
Morik
,
K.
,
Wiederkehr
,
P.
, and
Rhode
,
W.
,
2022
, “
Simulation and Sensor Data Fusion for Machine Learning Application
,”
Adv. Eng. Inform.
,
52
(
1
), p.
101600
.
26.
Zeng
,
J.
,
Zhao
,
Y.
,
Li
,
G.
,
Gao
,
Z.
,
Li
,
Y.
,
Barbat
,
S.
, and
Hu
,
Z.
,
2024
, “
Vehicle Crashworthiness Performance Prediction Through Fusion of Multiple Data Sources
,”
ASME J. Mech. Des.
,
146
(
5
), p.
051707
.
27.
Finkeldey
,
F.
,
Saadallah
,
A.
,
Wiederkehr
,
P.
, and
Morik
,
K.
,
2020
, “
Real-Time Prediction of Process Forces in Milling Operations Using Synchronized Data Fusion of Simulation and Sensor Data
,”
Eng. Appl. Artif. Intell.
,
94
(
1
), p.
103753
.
28.
Yoon
,
J.
,
Jarrett
,
D.
, and
Van der Schaar
,
M.
,
2019
, “
Time-Series Generative Adversarial Networks
,”
Adv. Neural Inform. Process. Syst.
,
32
.
29.
Zhu
,
J.-Y.
,
Park
,
T.
,
Isola
,
P.
, and
Efros
,
A. A.
,
2017
, “
Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks
,”
Proceedings of the IEEE International Conference on Computer Vision
,
Venice, Italy
, pp.
2223
2232
.
30.
Luleci
,
F.
,
Catbas
,
F. N.
, and
Avci
,
O.
,
2023
, “
CycleGAN for Undamaged-to-Damaged Domain Translation for Structural Health Monitoring and Damage Detection
,”
Mech. Syst. Signal Process.
,
197
(
1
), p.
110370
.
31.
Tsialiamanis
,
G.
,
Champneys
,
M. D.
,
Dervilis
,
N.
,
Wagg
,
D. J.
, and
Worden
,
K.
,
2022
, “
On the Application of Generative Adversarial Networks for Nonlinear Modal Analysis
,”
Mech. Syst. Signal Process.
,
166
(
1
), p.
108473
.
32.
Basak
,
P.
,
Nazmus Sakib
,
A. H. M.
,
Chowdhury
,
M. E. H.
,
Al-Emadi
,
N.
,
Yalcin
,
H. C.
,
Pedersen
,
S.
,
Mahmud
,
S.
,
Kiranyaz
,
S.
, and
Al-Maadeed
,
S.
,
2024
, “
A Novel Deep Learning Technique for Morphology Preserved Fetal ECG Extraction From Mother ECG Using 1D-CycleGAN
,”
Expert Syst. Appl.
,
235
(
1
), p.
121196
.
33.
Schockaert
,
C.
, and
Hoyez
,
H.
,
2020
, MTS-Cyclegan: An Adversarial-Based Deep Mapping Learning Network for Multivariate Time Series Domain Adaptation Applied to the Ironmaking Industry, arXiv preprint arXiv:2007.07518.
34.
Wu
,
Q.
,
Chen
,
Y.
, and
Meng
,
J.
,
2020
, “
DCGAN-Based Data Augmentation for Tomato Leaf Disease Identification
,”
IEEE Access
,
8
(
1
), pp.
98716
98728
.
35.
Qu
,
Y.
,
Chen
,
Y.
,
Huang
,
J.
, and
Xie
,
Y.
,
2019
, “
Enhanced pix2pix Dehazing Network
,”
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
,
Long Beach, CA
, pp.
8160
8168
.
36.
Karras
,
T.
,
Laine
,
S.
,
Aittala
,
M.
,
Hellsten
,
J.
,
Lehtinen
,
J.
, and
Aila
,
T.
,
2020
, “
Analyzing and Improving the Image Quality of Stylegan
,”
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
,
Seattle, WA
, pp.
8110
8119
.
37.
Adler
,
J.
, and
Lunz
,
S.
,
2018
, “
Banach Wasserstein GAN
,”
Adv. Neural Inform. Process. Syst.
,
31
.
38.
Donahue
,
J.
, and
Simonyan
,
K.
,
2019
, “
Large Scale Adversarial Representation Learning
,”
Adv. Neural Inform. Process. Syst.
,
32
.
39.
Kiranyaz
,
S.
,
Malik
,
J.
,
Abdallah
,
H. B.
,
Ince
,
T.
,
Iosifidis
,
A.
, and
Gabbouj
,
M.
,
2021
, “
Self-Organized Operational Neural Networks With Generative Neurons
,”
Neural Netw.
,
140
(
1
), pp.
294
308
.
40.
Malik
,
J.
,
Kiranyaz
,
S.
, and
Gabbouj
,
M.
,
2021
, “
Self-Organized Operational Neural Networks for Severe Image Restoration Problems
,”
Nerual Netw.
,
135
(
1
), pp.
201
211
.
41.
Devecioglu
,
O. C.
,
Malik
,
J.
,
Ince
,
T.
,
Kiranyaz
,
S.
,
Atalay
,
E.
, and
Gabbouj
,
M.
,
2021
, “
Real-Time Glaucoma Detection From Digital Fundus Images Using Self-ONNS
,”
IEEE Access
,
9
(
1
), pp.
140031
140041
.
42.
Kiranyaz
,
S.
,
Devecioglu
,
O. C.
,
Ince
,
T.
,
Malik
,
J.
,
Chowdhury
,
M.
,
Hamid
,
T.
,
Mazhar
,
R.
, et al
,
2022
, “
Blind ECG Restoration by Operational Cycle-GANs
,”
IEEE Trans. Biomed. Eng.
,
69
(
12
), pp.
3572
3581
.
43.
Ronneberger
,
O.
,
Fischer
,
P.
, and
Brox
,
T.
,
2015
, “
U-Net: Convolutional Networks for Biomedical Image Segmentation, Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015
,”
18th International Conference, Proceedings, Part III 18
,
Munich, Germany
,
Oct. 5–9
,
Springer
, pp.
234
241
.
44.
Lea
,
C.
,
Flynn
,
M. D.
,
Vidal
,
R.
,
Reiter
,
A.
, and
Hager
,
G. D.
,
2017
, “
Temporal Convolutional Networks for Action Segmentation and Detection
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Honolulu, HI
, pp.
156
165
.
45.
Lea
,
C.
,
Vidal
,
R.
,
Reiter
,
A.
, and
Hager
,
G. D.
,
2016
, “
Temporal Convolutional Networks: A Unified Approach to Action Segmentation
,”
Computer Vision–ECCV 2016 Workshops: Proceedings, Part III 14
,
Amsterdam, The Netherlands
,
Oct. 8–10 and 15–16
,
Springer
, pp.
47
54
.
46.
Wang
,
B.
,
Li
,
Z.
,
Xu
,
Z.
,
Sun
,
Z.
, and
Tian
,
K.
,
2023
, “
Digital Twin Modeling for Structural Strength Monitoring Via Transfer Learning-Based Multi-source Data Fusion
,”
Mech. Syst. Signal Process.
,
200
(
1
), p.
110625
.
47.
Borji
,
A.
,
2022
, “
Pros and Cons of GAN Evaluation Measures: New Developments
,”
Comput. Vision Imag. Understand.
,
215
(
1
), p.
103329
.
48.
Zeng
,
Y.
,
Zeng
,
J.
,
Todd
,
M.
, and
Hu
,
Z.
,
2024
, “
Data Augmentation Based on Image Translation for Bayesian Inference-Based Damage Diagnostics of Miter Gates
,”
ASCE-ASME J. Risk Uncert. Eng. Sys. Part B: Mech. Eng.
,
11
(
1
), pp.
011103
011121
.
49.
Obukhov
,
A.
, and
Krasnyanskiy
,
M.
,
2020
, “
Quality Assessment Method for GAN Based on Modified Metrics Inception Score and Fréchet Inception Distance, Software Engineering Perspectives in Intelligent Systems
,”
Proceedings of 4th Computational Methods in Systems and Software 2020, Vol. 1 4
,
Tomas Bata University, Zlín, Czech Republic
, pp.
102
114
..
50.
Barbat
,
S.
,
Fu
,
Y.
,
Zhan
,
Z.
,
Yang
,
R.-J.
, and
Gehre
,
C.
,
2013
, “
Objective Rating Metric for Dynamic Systems
,”
Enhan. Saf. Vehic.
,
2
, pp.
13
0448
.
51.
Almahairi
,
A.
,
Rajeshwar
,
S.
,
Sordoni
,
A.
,
Bachman
,
P.
, and
Courville
,
A.
,
2018
, “
Augmented CycleGAN: Learning Many-to-Many Mappings From Unpaired Data
,”
International Conference on Machine Learning, PMLR
,
Vienna, Austria
, PMLR, pp.
195
204
.
52.
Dreher
,
K. K.
,
Ayala
,
L.
,
Schellenberg
,
M.
,
Hübner
,
M.
,
Nölke
,
J.-H.
,
Adler
,
T. J.
,
Seidlitz
,
S.
,
Sellner
,
J.
,
Studier-Fischer
,
A.
, and
Gröhl
,
J.
,
2023
, “
International Conference on Medical Image Computing and Computer-Assisted Intervention
,”
MICCAI
,
Vancouver, Canada
.
53.
Rombach
,
R.
,
Esser
,
P.
, and
Ommer
,
B.
,
2020
, “Network-to-Network Translation With Conditional Invertible Neural Networks,”
Adv. Neural Inform. Process. Syst.
, Vol.
33
,
H.
Larochelle
,
M.
Ranzato
,
R.
Hadsell
,
M. F.
Balcan
, and
H.
Lin
, eds.,
Curran Associates Inc.
,
Dutchess County, New York
, pp.
2784
2797
.
54.
Miyato
,
T.
,
Kataoka
,
T.
,
Koyama
,
M.
, and
Yoshida
,
Y.
,
2018
, “
International Conference on Learning Representations
,”
ICLR
,
Vancouver Convention Center, Vancouver CANADA
.
55.
Gao
,
X.
,
Deng
,
F.
, and
Yue
,
X.
,
2020
, “
Data Augmentation in Fault Diagnosis Based on the Wasserstein Generative Adversarial Network With Gradient Penalty
,”
Neurocomputing
,
396
(
1
), pp.
487
494
.
You do not currently have access to this content.