Abstract

The development of rehabilitation robots has long been an issue of increasing interest in a wide range of fields. An important aspect of the ongoing research field is applying flexible components to rehabilitation equipment to enhance human−machine interaction. Another major challenge is to accurately estimate the individual’s intention to achieve safe operation and efficient training. In this article, a robotic knee−ankle orthosis (KAO) with shape memory alloy (SMA) actuators is developed, and the estimation method is proposed to determine the joint torque. First, based on the analysis of human lower limb structure and walking patterns, the mechanical design of the KAO that can achieve various rehabilitation training modes is detailed. Next, the dynamic model of the hybrid-driven KAO is established using the thermodynamic constitutive equation and Lagrange formalism. In addition, the joint torque estimation is realized by the nonlinear Kalman filter method. Finally, the prototype and human subject experiments are conducted, and the experimental results demonstrate that the KAO can assist lower limb movements. In the three experimental scenarios, reductions of 59.1%, 16.5%, and 73% of the torque estimation error during the knee joint movement are observed, respectively.

References

1.
Tian
,
J.
,
Yuan
,
L.
,
Xiao
,
W. D.
,
Ran
,
T.
,
Zhang
,
J. B.
, and
He
,
L.
,
2022
, “
Constrained Control Methods for Lower Extremity Rehabilitation Exoskeleton Robot Considering Unknown Perturbations
,”
Nonlinear Dyn.
,
108
(
2
), pp.
1395
1408
.
2.
Kim
,
H. J.
,
Lim
,
D. H.
,
Kim
,
W. S.
, and
Han
,
C. S.
,
2020
, “
Development of a Passive Modular Knee Mechanism for a Lower Limb Exoskeleton Robot and Its Effectiveness in the Workplace
,”
Int. J. Precis. Eng. Manuf.
,
21
(
2
), pp.
227
236
.
3.
Chen
,
B.
,
Zi
,
B.
,
Zhou
,
B.
, and
Wang
,
Z. Y.
,
2022
, “
Implementation of Robotic Ankle–Foot Orthosis With an Impedance-Based Assist-as-Needed Control Strategy
,”
ASME J. Mech. Rob.
,
14
(
5
), p.
051001
.
4.
Li
,
Y.
,
Zi
,
B.
,
Yang
,
Z. M.
, and
Ge
,
J.
,
2021
, “
Combined Kinematic and Static Analysis of an Articulated Lower Limb Traction Device for a Rehabilitation Robotic System
,”
Sci. China Technol. Sci.
,
64
(
6
), pp.
51
64
.
5.
Alamdari
,
A.
,
Haghighi
,
R.
, and
Krovi
,
V.
,
2018
, “
Stiffness Modulation in an Elastic Articulated-Cable Leg-Orthosis Emulator: Theory and Experiment
,”
IEEE Trans. Rob.
,
34
(
5
), pp.
1266
1279
.
6.
Wu
,
Q.
, and
Chen
,
Y.
,
2023
, “
Adaptive Cooperative Control of a Soft Elbow Rehabilitation Exoskeleton Based on Improved Joint Torque Estimation
,”
Mech. Syst. Signal Process.
,
184
, p.
109748
.
7.
Shi
,
D.
,
Zhang
,
W. X.
,
Zhang
,
W.
, and
Ding
,
X. L.
,
2019
, “
A Review on Lower Limb Rehabilitation Exoskeleton Robots
,”
Chin. J. Mech. Eng.
,
32
(
1
), pp.
1
11
.
8.
Rodríguez-Fernández
,
A.
,
Lobo-Prat
,
J.
, and
Font-Llagunes
,
J. M.
,
2021
, “
Systematic Review on Wearable Lower-Limb Exoskeletons for Gait Training in Neuromuscular Impairments
,”
J. Neuroeng. Rehabil.
,
18
(
1
), pp.
1
21
.
9.
Chen
,
G.
,
Qi
,
P.
,
Guo
,
Z.
, and
Yu
,
H. Y.
,
2016
, “
Mechanical Design and Evaluation of a Compact Portable Knee–Ankle–Foot Robot for Gait Rehabilitation
,”
Mech. Mach. Theory
,
103
, pp.
51
64
.
10.
Meng
,
W.
,
Liu
,
Q.
,
Zhou
,
Z.
,
Ai
,
Q.
,
Sheng
,
B.
, and
Xie
,
S. S.
,
2015
, “
Recent Development of Mechanisms and Control Strategies for Robot-Assisted Lower Limb Rehabilitation
,”
Mechatronics
,
31
, pp.
132
145
.
11.
Plaza
,
A.
,
Hernandez
,
M.
,
Puyuelo
,
G.
,
Garces
,
E.
, and
Garcia
,
E.
,
2021
, “
Lower-Limb Medical and Rehabilitation Exoskeletons: A Review of the Current Designs
,”
IEEE Rev. Biomed. Eng.
,
16
, pp.
278
291
.
12.
Harib
,
O.
,
Hereid
,
A.
,
Agrawal
,
A.
,
Gurriet
,
T.
,
Finet
,
S.
,
Boeris
,
G.
,
Duburcq
,
A.
, et al
,
2018
, “
Feedback Control of an Exoskeleton for Paraplegics: Toward Robustly Stable, Hands-Free Dynamic Walking
,”
IEEE Control. Syst. Mag.
,
38
(
6
), pp.
61
87
.
13.
Li
,
Y.
,
Zi
,
B.
,
Sun
,
Z.
,
Zhou
,
B.
, and
Ding
,
H.
,
2023
, “
Implementation of Cable-Driven Waist Rehabilitation Robotic System Using Fractional-Order Controller
,”
Mech. Mach. Theory
,
190
, p.
105460
.
14.
Huang
,
T. H.
,
Zhang
,
S.
,
Yu
,
S.
,
MacLean
,
M. K.
,
Zhu
,
J.
,
Di Lallo
,
A.
,
Jiao
,
C. H.
,
Bulea
,
T. C.
,
Zheng
,
M. H.
, and
Su
,
H.
,
2022
, “
Modeling and Stiffness-Based Continuous Torque Control of Lightweight Quasi-Direct-Drive Knee Exoskeletons for Versatile Walking Assistance
,”
IEEE Trans. Rob.
,
38
(
3
), pp.
1442
1459
.
15.
Veale
,
A. J.
,
Staman
,
K.
, and
Van Der Kooij
,
H.
,
2021
, “
Soft, Wearable, and Pleated Pneumatic Interference Actuator Provides Knee Extension Torque for Sit-to-Stand
,”
Soft Rob.
,
8
(
1
), pp.
28
43
.
16.
Tran
,
M.
,
Gabert
,
L.
,
Hood
,
S.
, and
Lenzi
,
T.
,
2022
, “
A Lightweight Robotic Leg Prosthesis Replicating the Biomechanics of the Knee, Ankle, and Toe Joint
,”
Sci. Rob.
,
7
(
72
), p.
eabo3996
.
17.
Shao
,
Y.
,
Zhang
,
W. X.
,
Su
,
Y. J.
, and
Ding
,
X. L.
,
2021
, “
Design and Optimisation of Load-Adaptive Actuator With Variable Stiffness for Compact Ankle Exoskeleton
,”
Mech. Mach. Theory
,
161
, p.
104323
.
18.
Song
,
J. Y.
,
Zhu
,
A. B.
,
Tu
,
Y.
,
Zhang
,
X. D.
, and
Cao
,
G.
,
2022
, “
Novel Design and Control of a Crank-Slider Series Elastic Actuated Knee Exoskeleton for Compliant Human–Robot Interaction
,”
IEEE/ASME Trans. Mechatron.
,
28
(
1
), pp.
531
542
.
19.
Xu
,
W. D.
,
Guo
,
Y. F.
,
Bravo
,
C.
, and
Ben-Tzvi
,
P.
,
2022
, “
Design, Control, and Experimental Evaluation of a Novel Robotic Glove System for Patients With Brachial Plexus Injuries
,”
IEEE Trans. Rob.
,
39
(
2
), pp.
1637
1652
.
20.
Qian
,
Y. P.
,
Han
,
S. S.
,
Wang
,
Y. N.
,
Yu
,
H. Y.
, and
Fu
,
C. L.
,
2022
, “
Toward Improving Actuation Transparency and Safety of a Hip Exoskeleton With a Novel Nonlinear Series Elastic Actuator
,”
IEEE/ASME Trans. Mechatron.
,
28
(
1
), pp.
417
428
.
21.
Wu
,
J. T.
,
Pei
,
Y. C.
,
Guan
,
J. H.
, and
Yan
,
C. L.
,
2021
, “
Free Response and Musical Pitch of Shape Memory Alloy Wires Under Voltage Loading
,”
IEEE Trans. Ind. Inf.
,
69
(
5
), pp.
5009
5017
.
22.
Ding
,
Q. P.
,
Chen
,
J. H.
,
Yan
,
W. Q.
,
Yan
,
K.
,
Kyme
,
A.
, and
Cheng
,
S. S.
,
2022
, “
A High-Performance Modular SMA Actuator With Fast Heating and Active Cooling for Medical Robotics
,”
IEEE/ASME Trans. Mechatron.
,
27
(
6
), pp.
5902
5913
.
23.
Bishay
,
P. L.
,
Aguilar
,
C.
,
Amirbekyan
,
A.
,
Vartanian
,
K.
,
Arjon-Ramirez
,
M.
, and
Pucio
,
D.
,
2021
, “
Design of a Lightweight Shape Memory Alloy Stroke-Amplification and Locking System in a Transradial Prosthetic Arm
,”
ASME 2021 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
,
Virtual, Online
,
Oct. 20
, p.
V001T05A015
.
24.
Gong
,
Y. J.
,
Hwang
,
S. T.
,
Yang
,
S. Y.
,
Kim
,
K.
,
Park
,
J. H.
,
Jung
,
H.
,
Shin
,
D.
, and
Choi
,
H. R.
,
2022
, “
Retractable Locking System Driven by Shape Memory Alloy Actuator for Lightweight Soft Robotic Application
,”
IEEE Robot. Autom. Lett.
,
7
(
4
), pp.
12185
12192
.
25.
Lee
,
J. H.
,
Chung
,
Y. S.
, and
Rodrigue
,
H.
,
2019
, “
Application of SMA Spring Tendons for Improved Grasping Performance
,”
Smart Mater. Struct.
,
28
(
3
), p.
035006
.
26.
Rodrigue
,
H.
,
Wang
,
W.
,
Kim
,
D. R.
, and
Ahn
,
S. H.
,
2017
, “
Curved Shape Memory Alloy-Based Soft Actuators and Application to Soft Gripper
,”
Compos. Struct.
,
176
, pp.
398
406
.
27.
Akbari
,
S.
,
Sakhaei
,
A. H.
,
Panjwani
,
S.
,
Kowsari
,
K.
,
Serjouei
,
A.
, and
Ge
,
Q.
,
2019
, “
Multimaterial 3D Printed Soft Actuators Powered by Shape Memory Alloy Wires
,”
Sens. Actuators, A
,
290
, pp.
177
189
.
28.
Lee
,
J. H.
,
Chung
,
Y. S.
, and
Rodrigue
,
H.
,
2019
, “
Long Shape Memory Alloy Tendon-Based Soft Robotic Actuators and Implementation as a Soft Gripper
,”
Sci. Rep.
,
9
(
1
), pp.
1
12
.
29.
Bishay
,
P. L.
,
Fontana
,
J.
,
Raquipiso
,
B.
,
Rodriguez
,
J.
,
Borreta
,
M. J.
,
Enos
,
B.
,
Gay
,
T.
, and
Mauricio
,
K.
,
2020
, “
Development of a Biomimetic Transradial Prosthetic Arm With Shape Memory Alloy Muscle Wires
,”
Eng. Res. Express
,
2
(
3
), p.
035041
.
30.
Chaurasiya
,
K. L.
,
Harsha
,
A. S.
,
Sinha
,
Y.
, and
Bhattacharya
,
B.
,
2022
, “
Design and Development of Non-Magnetic Hierarchical Actuator Powered by Shape Memory Alloy Based Bipennate Muscle
,”
Sci. Rep.
,
12
(
1
), p.
10758
.
31.
Moslemi
,
N.
,
Gohari
,
S.
,
Mozafari
,
F.
,
Zardian
,
M. G.
,
Burvill
,
C.
,
Yahya
,
M. Y.
, and
Ayob
,
A.
,
2020
, “
A Novel Smart Assistive Knee Brace Incorporated With Shape Memory Alloy Wire Actuator
,”
J. Intell. Mater. Syst. Struct.
,
31
(
13
), pp.
1543
1556
.
32.
Zhang
,
J. Q.
,
Cong
,
M.
,
Liu
,
D.
,
Du
,
Y.
, and
Ma
,
H. J.
,
2021
, “
Design of an Active and Passive Control System for a Knee Exoskeleton With Variable Stiffness Based on a Shape Memory Alloy
,”
J. Intell. Rob. Syst.
,
101
(
3
), pp.
1
15
.
33.
Yang
,
H. J.
,
Wan
,
J. C.
,
Jin
,
Y.
,
Yu
,
X.
, and
Fang
,
Y. F.
,
2022
, “
EEG and EMG Driven Post-Stroke Rehabilitation: A Review
,”
IEEE Sens. J.
,
22
(
24
), pp.
23649
23660
.
34.
Xie
,
C. L.
,
Yang
,
Q. Q.
,
Huang
,
Y.
,
Su
,
S. W.
,
Xu
,
T.
, and
Song
,
R.
,
2021
, “
A Hybrid Arm-Hand Rehabilitation Robot With EMG-Based Admittance Controller
,”
IEEE Trans. Biomed. Circuits Syst.
,
15
(
6
), pp.
1332
1342
.
35.
Zhang
,
L. B.
,
Zhu
,
X. Y.
,
Gutierrez-Farewik
,
E. M.
, and
Wang
,
R. L.
,
2022
, “
Ankle Joint Torque Prediction Using an NMS Solver Informed-ANN Model and Transfer Learning
,”
IEEE J. Biomed. Health Inform.
,
26
(
12
), pp.
5895
5906
.
36.
Pena
,
G. G.
,
Consoni
,
L. J.
,
dos Santos
,
W. M.
, and
Siqueira
,
A. A.
,
2019
, “
Feasibility of an Optimal EMG-Driven Adaptive Impedance Control Applied to an Active Knee Orthosis
,”
Rob. Auton. Syst.
,
112
, pp.
98
108
.
37.
Zhuang
,
Y.
,
Yao
,
S. W.
,
Ma
,
C. M.
, and
Song
,
R.
,
2018
, “
Admittance Control Based on EMG-Driven Musculoskeletal Model Improves the Human–Robot Synchronization
,”
IEEE Trans. Ind. Inf.
,
15
(
2
), pp.
1211
1218
.
38.
Wang
,
W. Q.
,
Liang
,
X.
,
Liu
,
S. D.
,
Lin
,
T. Y.
,
Zhang
,
P.
,
Lv
,
Z.
,
Wang
,
J. X.
, and
Hou
,
Z. G.
,
2022
, “
Drivable Space of Rehabilitation Robot for Physical Human–Robot Interaction: Definition and an Expanding Method
,”
IEEE Trans. Rob.
,
39
(
1
), pp.
343
356
.
39.
Kommuri
,
S. K.
,
Han
,
S.
, and
Lee
,
S.
,
2021
, “
External Torque Estimation Using Higher Order Sliding-Mode Observer for Robot Manipulators
,”
IEEE/ASME Trans. Mechatron.
,
27
(
1
), pp.
513
523
.
40.
Ismail
,
M. A.
,
Windelberg
,
J.
, and
Liu
,
G.
,
2021
, “
Simplified Sensorless Torque Estimation Method for Harmonic Drive Based Electro-Mechanical Actuator
,”
IEEE Robot. Autom. Lett.
,
6
(
2
), pp.
835
840
.
41.
Shamaei
,
K.
,
Cenciarini
,
M.
, and
Dollar
,
A. M.
,
2011
, “
On the Mechanics of the Ankle in the Stance Phase of the Gait
,”
Proceedings of the IEEE Engineering in Medicine and Biology Society
,
Boston, MA
,
Aug. 30– Sept. 3
, pp.
8135
8140
.
42.
Luca
,
R. S.
,
2016
, “
Lower Limbs Robot Motion Based on the Probabilistic Estimation of the Joint Angles Starting From EMG Data of an Injured Subject
,”
Doctoral dissertation thesis
,
College of Engineering, University of Padua
,
Italy
.
43.
Chen
,
B.
,
Zi
,
B.
,
Wang
,
Z.
,
Li
,
Y.
, and
Qian
,
J.
,
2021
, “
Development of Robotic Ankle–Foot Orthosis With Series Elastic Actuator and Magneto-Rheological Brake
,”
ASME J. Mech. Rob.
,
13
(
1
), p.
011002
.
44.
Leon
,
G. F. V.
,
Bou
,
S. F.
,
Maldonado
,
C. M. C.
, and
Albarracin
,
F. V. P.
,
2020
, “
Mechanical Design of a Knee Prosthesis for Transfemoral Amputation
,”
2020 IEEE ANDESCON
,
Quito, Ecuador
,
Oct. 13–16
, pp.
1
6
.
45.
Gao
,
M. Y.
,
Wang
,
Z. L.
,
Li
,
S.
,
Li
,
J.
,
Pang
,
Z. X.
,
Liu
,
S.
, and
Duan
,
Z. F.
,
2021
, “
Design and Optimization of Exoskeleton Structure of Lower Limb Knee Joint Based on Cross Four-bar Linkage
,”
AIP Adv.
,
11
(
6
), p.
065124
.
46.
Guo
,
Q.
,
Chen
,
Z. L.
,
Yan
,
Y.
,
Xiong
,
W. Y.
,
Jiang
,
D.
, and
Shi
,
Y.
,
2022
, “
Model Identification and Human-Robot Coupling Control of Lower Limb Exoskeleton With Biogeography-Based Learning Particle Swarm Optimization
,”
Int. J. Control Autom. Syst.
,
20
(
2
), pp.
589
600
.
47.
Cheng
,
S. S.
,
Kim
,
Y.
, and
Desai
,
J. P.
,
2017
, “
Modeling and Characterization of Shape Memory Alloy Springs With Water Cooling Strategy in a Neurosurgical Robot
,”
J. Intell. Mater. Syst. Struct.
,
28
(
16
), pp.
2167
2183
.
48.
Moghadam
,
M. H.
,
Zakerzadeh
,
M. R.
, and
Ayati
,
M.
,
2019
, “
Robust Sliding Mode Position Control of a Fast Response SMA-Actuated Rotary Actuator Using Temperature and Strain Feedback
,”
Sens. Actuators, A
,
292
, pp.
158
168
.
49.
Wang
,
Z. Y.
,
Liu
,
G. M.
,
Qian
,
S.
,
Wang
,
D. M.
,
Wei
,
X.
, and
Yu
,
X.
,
2023
, “
Tracking Control With External Force Self-Sensing Ability Based on Position/Force Estimators and Non-Linear Hysteresis Compensation for a Backdrivable Cable-Pulley-Driven Surgical Robotic Manipulator
,”
Mech. Mach. Theory
,
183
, p.
105259
.
50.
Brunot
,
M.
,
Janot
,
A.
,
Young
,
P. C.
, and
Carrillo
,
F.
,
2018
, “
An Improved Instrumental Variable Method for Industrial Robot Model Identification
,”
Control Eng. Pract.
,
74
, pp.
107
117
.
51.
Bergmann
,
L.
,
Lück
,
O.
,
Voss
,
D.
,
Buschermöhle
,
P.
,
Liu
,
L.
,
Leonhardt
,
S.
, and
Ngo
,
C.
,
2022
, “
Lower Limb Exoskeleton With Compliant Actuators: Design, Modeling, and Human Torque Estimation
,”
IEEE/ASME Trans. Mechatron.
,
28
(
2
), pp.
758
769
.
52.
Tang
,
M.
,
Chen
,
Z.
, and
Yin
,
F.
,
2020
, “
An Improved H-Infinity Unscented FastSLAM With Adaptive Genetic Resampling
,”
Rob. Auton. Syst.
,
134
, p.
103661
.
53.
Havangi
,
R.
,
2016
, “
Robust SLAM: SLAM Base on H Square Root Unscented Kalman Filter
,”
Nonlinear Dyn.
,
83
(
1–2
), pp.
767
779
.
54.
Sun
,
Z.
,
Li
,
Y.
,
Zi
,
B.
, and
Chen
,
B.
,
2023
, “
Design, Modeling and Evaluation of a Hybrid Driven Knee-Ankle Orthosis With SMA Actuators
,”
ASME J. Mech. Des.
,
145
(
6
), p.
063301
.
55.
Dittrich
,
H.
,
Schimmack
,
M.
,
Siemsen
,
C. H.
,
Dittrich
,
H.
,
Schimmack
,
M.
, and
Siemsen
,
C. H.
,
2019
,
Endoprothetik der Unteren Extremität. Orthopädische Biomechanik: Einführung in die Endoprothetik der Gelenke der Unteren Extremitäten
,
Springer Science & Business Media
,
Berlin
,
Chap. 2
.
You do not currently have access to this content.