Abstract

Developable mechanisms provide unparalleled compactness and deployability. This paper explores the kinematic behavior of developable mechanisms that conform to regular cylindrical surfaces. Design considerations that aid in the dimensional synthesis of these mechanisms are developed and demonstrated through case studies. The design implications, limitations, and opportunities associated with regular cylindrical developable mechanisms are discussed through the lens of both an analytical and graphical methods.

References

1.
Song
,
X.
,
Guo
,
H.
,
Liu
,
S.
,
Meng
,
F.
,
Chen
,
Q.
,
Liu
,
R.
, and
Deng
,
Z.
,
2019
, “
Cable-Truss Hybrid Double-Layer Deployable Mechanical Network Constructed of Bennett Linkages and Planar Symmetric Four-Bar Linkages
,”
Mech. Mach. Theory
,
133
, pp.
459
480
.
2.
Qi
,
X.
,
Huang
,
H.
,
Li
,
B.
, and
Deng
,
Z.
,
2016
, “
A Large Ring Deployable Mechanism for Space Satellite Antenna
,”
Aerosp. Sci. Technol.
,
58
, pp.
498
510
.
3.
Cheng
,
P.
,
Ding
,
H.
,
Cao
,
W.-A.
,
Gosselin
,
C.
, and
Geng
,
M.
,
2021
, “
A Novel Family of Umbrella-Shaped Deployable Mechanisms Constructed by Multi-Layer and Multi-Loop Spatial Linkage Units
,”
Mech. Mach. Theory
,
161
, p.
104169
.
4.
Nelson
,
T. G.
,
Zimmerman
,
T. K.
,
Lang
,
R. J.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2019
, “
Developable Mechanisms on Developable Surfaces
,”
Sci. Robot.
,
4
(
27
), p.
5171
.
5.
Seymour
,
K.
,
Sheffield
,
J.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2019
, “
Cylindrical Developable Mechanisms for Minimally Invasive Surgical Instruments
,”
ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Anaheim, CA
,
Aug. 18–21
.
6.
Greenwood
,
J. R.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2019
, “
Developable Mechanisms on Regular Cylindrical Surfaces
,”
Mech. Mach. Theory
,
142
, p.
103584
.
7.
Struik
,
D. J.
,
1961
,
Lectures on Classical Differential Geometry
,
Courier Corporation
,
New York
.
8.
Zimmerman
,
T.
,
2018
, “
A Definition and Demonstration of Developable Mechanisms
,” Master’s thesis, Brigham Young University, Provo, UT.
9.
Hyatt
,
L. P.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2020
, “
Developable Mechanisms on Right Conical Surfaces
,”
Mech. Mach. Theory
,
149
, p.
103813
.
10.
Butler
,
J.
,
Greenwood
,
J.
,
Howell
,
L. L.
, and
Magleby
,
S.
,
2021
, “
Limits of Extramobile and Intramobile Motion of Cylindrical Developable Mechanisms
,”
ASME J. Mech. Rob.
,
13
(
1
), p.
011024
.
11.
Woodland
,
M.
,
Hsiung
,
M.
,
Matheson
,
E. L.
,
Safsten
,
C. A.
,
Greenwood
,
J.
,
Halverson
,
D. M.
, and
Howell
,
L. L.
,
2021
, “
Analysis of the Rigid Motion of a Conical Developable Mechanism
,”
ASME J. Mech. Rob.
,
13
(
3
), p.
031008
.
12.
Butler
,
J.
,
Greenwood
,
J.
,
Howell
,
L. L.
, and
Magleby
,
S.
,
2021
, “
Bistability in Cylindrical Developable Mechanisms Through the Principle of Reflection
,”
ASME J. Mech. Des.
,
143
(
8
), p.
083302
.
13.
Sheffield
,
J. L.
,
Sargent
,
B.
, and
Howell
,
L.
,
2022
, “
Embedded Linear-Motion Developable Mechanisms on Cylindrical Developable Surfaces
,”
ASME IDETC Design Conference
,
St. Louis, MO
,
Aug. 14–17
.
14.
Ferguson
,
E. S.
,
2021
,
Kinematics of Mechanisms From the Time of Watt
,
Good Press
,
Boca Raton, FL
.
15.
McCarthy
,
J. M.
, and
Soh
,
G. S.
,
2010
,
Geometric Design of Linkages
,
Springer Science & Business Media
,
New York
.
16.
Hartenberg
,
R.
, and
Danavit
,
J.
,
1964
,
Kinematic Synthesis of Linkages
,
McGraw-Hill
,
New York
.
17.
Uicker
,
J. J.
,
Pennock
,
G. R.
,
Shigley
,
J. E.
, and
Mccarthy
,
J. M.
,
2003
,
Theory of Machines and Mechanisms
, Vol. 768,
Oxford University Press
,
New York
.
18.
Norton
,
R. L.
,
2004
,
Design of Machinery: An Introduction to the Synthesis and Analysis of Mechanisms and Machines
,
McGraw-Hill Professional
,
New York
.
19.
Cleghorn
,
W.
, and
Dechev
,
N.
,
2015
,
Mechanics of Machines
,
Oxford University Press
,
Oxford
.
20.
Angeles
,
J.
, and
Bai
,
S.
,
2022
,
Kinematics of Mechanical Systems: Fundamentals, Analysis and Synthesis
,
Springer Nature
,
New York
.
21.
Hunt
,
K. H.
,
1978
,
Kinematic Geometry of Mechanisms
,
Oxford University Press
,
Oxford
.
22.
Erdman
,
A. G.
, and
Gustafson
,
J.
,
1977
, “
Lincages: Linkage Interactive Computer Analysis and Graphically Enhanced Synthesis Package
,”
American Society of Mechanical Engineers (Paper) (77-DET-5).
23.
Burmester
,
L. E. H.
,
1888
,
Lehrbuch der Kinematik: Für studirende der Maschinen-Technik, Mathematik und Physik geometrisch dargestellt. Die ebene Bewegung. Mit einem Atlas von 57 lithographirten Tafeln
, Vol.
1
,
Felix
,
Leipzig, Germany
.
24.
Jiménez
,
J.
,
Alvarez
,
G.
,
Cardenal
,
J.
, and
Cuadrado
,
J.
,
1997
, “
A Simple and General Method for Kinematic Synthesis of Spatial Mechanisms
,”
Mech. Mach. Theory
,
32
(
3
), pp.
323
341
.
25.
Kinzel
,
E. C.
,
Schmiedeler
,
J. P.
, and
Pennock
,
G. R.
,
2006
, “
Kinematic Synthesis for Finitely Separated Positions Using Geometric Constraint Programming
,”
ASME J. Mech. Des.
,
128
(
5
), pp.
1070
1079
.
26.
Mirth
,
J. A.
,
2012
, “
The Application of Geometric Constraint Programming to the Design of Motion Generating Six-Bar Linkages
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Chicago, IL
,
Aug. 12–15
, Vol. 45035, American Society of Mechanical Engineers, pp.
1503
1511
.
27.
Mirth
,
J. A.
,
2012
, “
Parametric Modeling: A New Paradigm for Mechanisms Education?
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Chicago, IL
,
Aug. 12–15
, Vol. 45035, American Society of Mechanical Engineers, pp.
1497
1502
.
28.
Zimmerman
,
R. A.
,
2018
, “
Planar Linkage Synthesis for Mixed Motion, Path, and Function Generation Using Poles and Rotation Angles
,”
ASME J. Mech. Rob.
,
10
(
2
), p.
025004
.
29.
Zimmerman
,
R. A.
,
2013
, “
Planar Linkage Synthesis for Rigid Body Guidance Using Poles and Rotation Angles
,”
Volume 6A: 37th Mechanisms and Robotics Conference
,
Portland, OR
,
Aug. 4–7
, ASME, p. V06AT07A038.
30.
Zimmerman
,
R. A.
,
2014
, “
Planar Linkage Synthesis for Coupler Point Path Guidance Using Poles and Rotation Angles
,”
Volume 5B: 38th Mechanisms and Robotics Conference
,
Buffalo, NY
,
Aug. 17–20
, ASME, p. V05BT08A086.
31.
Zimmerman
,
R. A.
,
2015
, “
Planar Linkage Synthesis for Function Generation Using Poles and Rotation Angles
,”
Volume 5B: 39th Mechanisms and Robotics Conference
,
Boston, MA
,
Aug. 2–5
, ASME, p. V05BT08A066.
32.
Purwar
,
A.
,
Deshpande
,
S.
, and
Ge
,
Q.
,
2017
, “
Motiongen: Interactive Design and Editing of Planar Four-Bar Motions for Generating Pose and Geometric Constraints
,”
ASME J. Mech. Rob.
,
9
(
2
), p.
024504
.
33.
Freudenstein
,
F.
,
1954
,
Design of Four-Link Mechanisms
,
Columbia University
,
New York
.
34.
Sandor
,
G. N.
,
1959
,
A General Complex-Number Method for Plane Kinematic Synthesis with Applications
,
Columbia University
,
New York
.
35.
Kaufman
,
R.
,
1978
, “
Mechanism Design by Computer
,”
Mach. Des.
,
50
(
HS-025 808U
), pp.
94
100
.
36.
Erdman
,
A. G.
,
1981
, “
Three and Four Precision Point Kinematic Synthesis of Planar Linkages
,”
Mech. Mach. Theory
,
16
(
3
), pp.
227
245
.
37.
Erdman
,
A. G.
,
Sandor
,
G. N.
, and
Kota
,
S.
,
1997
,
Mechanism Design: Analysis and Synthesis
,
Prentice-Hall
,
Upper Saddle River, NJ
.
38.
Erdman
,
A.
,
Sandor
,
G.
, and
Kota
,
S.
,
1984
,
Advanced Mechanism Design: Analysis and Synthesis
,
Prentice-Hall
,
Upper Saddle River, NJ
.
39.
Loerch
,
R.
,
Erdman
,
A.
,
Sandor
,
G.
, and
Midha
,
A.
,
1976
, “
Synthesis of Four Bar Linkages With Specified Ground Pivots
,”
Proceedings of 4th Applied Mechanisms Conference
,
Chicago, IL
,
Nov. 3–5
, pp.
101
106
.
40.
Raghavan
,
M.
, and
Roth
,
B.
,
1995
, “
Solving Polynomial Systems for the Kinematic Analysis and Synthesis of Mechanisms and Robot Manipulators
,”
J. Vib. Acoust.
,
117
(
B
), pp.
71
79
.
41.
Kimbrell
,
J. T.
,
1991
,
Kinematics Analysis and Synthesis
,
McGraw-Hill Science, Engineering & Mathematics
,
New York
.
42.
Natesan
,
A. K.
,
1994
,
Kinematic Analysis and Syn thesis of Four-bar Mechanisms for Straight Line Coupler Curves
,
Rochester Institute of Technology
,
New York
.
43.
Wu
,
R.
,
Li
,
R.
, and
Bai
,
S.
,
2021
, “
A Fully Analytical Method for Coupler-Curve Synthesis of Planar Four-Bar Linkages
,”
Mech. Mach. Theory
,
155
, p.
104070
.
44.
Li
,
X.
,
Wei
,
S.
,
Liao
,
Q.
, and
Zhang
,
Y.
,
2020
, “
A Novel Analytical Method for Four-Bar Path Generation Synthesis Based on Fourier Series
,”
Mech. Mach. Theory
,
144
, p.
103671
.
45.
Pickard
,
J. K.
,
Carretero
,
J. A.
, and
Merlet
,
J.-P.
,
2020
, “
Appropriate Synthesis of the Four-Bar Linkage
,”
Mech. Mach. Theory
,
153
, p.
103965
.
46.
Hernández
,
A.
,
Munoyerro
,
A.
,
Urizar
,
M.
, and
Amezua
,
E.
,
2021
, “
Comprehensive Approach for the Dimensional Synthesis of a Four-Bar Linkage Based on Path Assessment and Reformulating the Error Function
,”
Mech. Mach. Theory
,
156
, p.
104126
.
47.
Hassanzadeh
,
N.
, and
Perez-Gracia
,
A.
,
2022
, “
Mixed Position and Twist Space Synthesis of 3R Chains
,”
Robotics
,
11
(
1
), p.
13
.
48.
Baigunchekov
,
Z.
,
Laribi
,
M. A.
,
Mustafa
,
A.
, and
Kassinov
,
A.
,
2021
, “
Kinematic Synthesis and Analysis of the Robomech Class Parallel Manipulator With Two Grippers
,”
Robotics
,
10
(
3
), p.
99
.
49.
Brake
,
D. A.
,
Hauenstein
,
J. D.
,
Murray
,
A. P.
,
Myszka
,
D. H.
, and
Wampler
,
C. W.
,
2016
, “
The Complete Solution of Alt-Burmester Synthesis Problems for Four-Bar Linkages
,”
ASME J. Mech. Rob.
,
8
(
4
), p.
041018
.
50.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
John Wiley & Sons
,
New York
.
51.
Mironychev
,
A.
,
2018
, “
SAS and SSA Conditions for Congruent Triangles
,”
J. Math. Syst. Sci.
,
8
(
2
), pp.
59
66
.
52.
Hilbert
,
D.
,
1902
,
The Foundations of Geometry
,
Open Court Publishing Company
,
Chicago, IL
.
53.
Naughton
,
B. T.
,
Preus
,
R.
,
Jimenez
,
T.
,
Whipple
,
B.
, and
Gentle
,
J.
,
2020
, “
Market Opportunities for Deployable Wind Systems for Defense and Disaster Response
,” Tech. rep.,
Sandia National Lab. (SNL-NM)
,
Albuquerque, NM
.
54.
Naughton
,
B.
,
Houchens
,
B.
,
Summerville
,
B.
,
Jimenez
,
T.
,
Preus
,
R.
,
Reen
,
D.
,
Gentle
,
J.
, and
Lang
,
E.
,
2022
, “
Design Guidelines for Deployable Wind Turbines for Defense and Disaster Response Missions
,”
J. Phys.: Conf. Ser.
,
Delft, The Netherlands
,
June 1–3
.
55.
Jimenez
,
A.
, and
Summerville
,
B.
,
2022
, “
Design Innovations for Deployable Wind Turbines
,”
Military Engineer
,
114
(NREL/JA-7A40-79197), pp.
1
3
.
56.
Ibrahim
,
A.
,
Diso
,
I.
,
Auwal
,
S.
,
Ibrahim
,
M. A.
,
Dambatta
,
M.
, and
Ramesh
,
S.
,
2020
, “
Design of Self-Erecting Tower for a Wind Turbine
,”
Int. J. Eng. Res. Technol.
,
6
(
12
), pp.
63
82
.
57.
Campione
,
G.
,
Cannella
,
F.
,
Zizzo
,
M.
, and
Pauletta
,
M.
,
2021
, “
Buckling Strength of Steel Tube for Lifting Telescopic Wind Steel Tower
,”
Eng. Fail. Anal.
,
121
, p.
105153
.
58.
Pantano
,
A.
,
Tucciarelli
,
T.
,
Montinaro
,
N.
, and
Mancino
,
A.
,
2020
, “
Design of a Telescopic Tower for Wind Energy Production With Reduced Environmental Impact
,”
Int. J. Precis. Eng. Manuf. Green Technol.
,
7
, pp.
119
130
.
59.
Winslow
,
A. R.
,
2017
,
Urban Wind Generation: Comparing Horizontal and Vertical Axis Wind Turbines
,
Clark University
,
Worcester, MA
. https://commons.clarku.edu/idce_masters_papers/127
60.
Johari
,
M. K.
,
Jalil
,
M.
, and
Shariff
,
M. F. M.
,
2018
, “
Comparison of Horizontal Axis Wind Turbine (HAWT) and Vertical Axis Wind Turbine (VAWT)
,”
Int. J. Eng. Technol.
,
7
(
4.13
), pp.
74
80
.
61.
Gohil
,
H.
, and
Patel
,
S.
,
2014
, “
Design Procedure for Lenz Type Vertical Axis Wind Turbine for Urban Domestic Application
,”
Int. J. Sci. Res. Dev.
,
2
(
3
), pp.
2321
0613
.
62.
Elkhoury
,
M.
,
Kiwata
,
T.
, and
Aoun
,
E.
,
2015
, “
Experimental and Numerical Investigation of a Three-Dimensional Vertical-Axis Wind Turbine With Variable-Pitch
,”
J. Wind Eng. Ind. Aerodyn.
,
139
, pp.
111
123
.
63.
Bucur
,
I.
,
Malael
,
I.
,
Duran
,
B.
, and
Preda
,
D.
,
2021
, “
Drag Based Wind Turbine Lenz Type Manufacturing and Assembly
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
1182
, p.
012009
.
64.
Li
,
S.
,
Zhao
,
J.
,
Lu
,
P.
, and
Xie
,
Y.
,
2010
, “
Maximum Packing Densities of Basic 3D Objects
,”
Chin. Sci. Bull.
,
55
(
2
), pp.
114
119
.
You do not currently have access to this content.