Abstract

To optimize structures and monitor their health, it is essential to build an accurate dynamic analysis model. However, traditional modeling methods based solely on physical information or data-driven techniques may not suffice for many engineering applications. While physical models can accurately simulate complex equipment, they may also incur high computational time. On the other hand, data-driven models may improve computational efficiency but are subject to significant deviations due to the influence of training data. To address these challenges, the Physics-Informed Neural Network (PINN) has gained popularity for imposing physical constraints during the training process, leading to better generalization capabilities with fewer data samples. This paper proposes a physics-informed hybrid modeling (PIHM) approach that combines a reduced-order model, kernel functions, and dynamic equations to predict dynamic output with limited training data and physical information. The method integrates prior physics information into function approximation by incorporating the reduced dynamic equation into a surrogate modeling framework. The loss function considers inertial and damping effects, ensuring physical plausibility. Unlike traditional PINN applications, the proposed modeling method is more explainable, as the trained model can be expressed in function form with engineering interpretation. The approach is verified with a real-world engineering example (telehandler boom) under complex load conditions, demonstrating accuracy, efficiency, and physical plausibility. Overall, the proposed method offers promising capabilities in solving problems where high-fidelity simulation is challenging.

References

1.
Peng
,
H.
,
Yan
,
J.
,
Yu
,
Y.
, and
Luo
,
Y.
,
2021
, “
Time Series Estimation Based on Deep Learning for Structural Dynamic Nonlinear Prediction
,”
Structures
,
29
, pp.
1016
1031
.
2.
Albermani
,
F. G. A.
, and
Kitipornchai
,
S.
,
2003
, “
Numerical Simulation of Structural Behavior of Transmission Towers
,”
Thin Walled Struct.
,
41
(
2–3
), pp.
167
177
.
3.
Karniadakis
,
G. E.
,
Kevrekidis
,
I. G.
,
Lu
,
L.
,
Perdikaris
,
P.
,
Wang
,
S.
, and
Yang
,
L.
,
2021
, “
Physics-Informed Machine Learning
,”
Nat. Rev. Phys.
,
3
(
6
), pp.
422
440
.
4.
Ritto
,
T. G.
, and
Rochinha
,
F. A.
,
2021
, “
Digital Twin, Physics-Based Model, and Machine Learning Applied to Damage Detection in Structures
,”
Mech. Syst. Signal Process
,
155
, p.
107614
.
5.
Zhang
,
W.
,
Yang
,
D.
, and
Wang
,
H.
,
2019
, “
Data-Driven Methods for Predictive Maintenance of Industrial Equipment: A Survey
,”
IEEE Syst. J.
,
13
(
3
), pp.
2213
2227
.
6.
Qu
,
Z. Q.
,
2004
,
Model Order Reduction Techniques With Applications in Finite Element Analysis: With Applications in Finite Element Analysis
,
Springer Science & Business Media
,
London, UK
.
7.
Quarteroni
,
A.
,
Manzoni
,
A.
, and
Negri
,
F.
,
2015
,
Reduced Basis Methods for Partial Differential Equations: An Introduction
, Vol.
92
,
Springer
,
New York
.
8.
Rapún
,
M. L.
, and
Vega
,
J. M.
,
2010
, “
Reduced Order Models Based on Local POD Plus Galerkin Projection
,”
J. Comput. Phys.
,
229
(
8
), pp.
3046
3063
.
9.
Givois
,
A.
,
Grolet
,
A.
,
Thomas
,
O.
, and
Deü
,
J. F.
,
2019
, “
On the Frequency Response Computation of Geometrically Nonlinear Flat Structures Using Reduced-Order Finite Element Models
,”
Nonlinear Dyn.
,
97
(
2
), pp.
1747
1781
.
10.
Sobester
,
A.
,
Forrester
,
A.
, and
Keane
,
A.
,
2008
,
Engineering Design via Surrogate Modelling: A Practical Guide
,
John Wiley & Sons
,
Chichester, UK
.
11.
Song
,
X.
,
Sun
,
G.
,
Li
,
G.
,
Gao
,
W.
, and
Li
,
Q.
,
2013
, “
Crashworthiness Optimization of Foam-Filled Tapered Thin-Walled Structure Using Multiple Surrogate Models
,”
Struct. Multidiscipl. Optim.
,
47
(
2
), pp.
221
231
.
12.
Glaz
,
B.
,
Liu
,
L.
, and
Friedmann
,
P. P.
,
2010
, “
Reduced-Order Nonlinear Unsteady Aerodynamic Modeling Using a Surrogate-Based Recurrence Framework
,”
AIAA J.
,
48
(
10
), pp.
2418
2429
.
13.
Tu
,
J.
,
Liu
,
C.
, and
Qi
,
P.
,
2022
, “
Physics-Informed Neural Network Integrating PointNet-Based Adaptive Refinement for Investigating Crack Propagation in Industrial Applications
,”
IEEE Trans. Ind. Inf.
,
19
(
2
), pp.
2210
2218
.
14.
Jeong
,
H.
,
Bai
,
J.
,
Batuwatta-Gamage
,
C. P.
,
Rathnayaka
,
C.
,
Zhou
,
Y.
, and
Gu
,
Y.
,
2023
, “
A Physics-Informed Neural Network-Based Topology Optimization (PINNTO) Framework for Structural Optimization
,”
Eng. Struct.
,
278
, p.
115484
.
15.
Guo
,
M.
, and
Hesthaven
,
J. S.
,
2019
, “
Data-Driven Reduced Order Modeling for Time-Dependent Problems
,”
Comput. Methods Appl. Mech. Eng.
,
345
, pp.
75
99
.
16.
Peherstorfer
,
B.
, and
Willcox
,
K.
,
2015
, “
Dynamic Data-Driven Reduced-Order Models
,”
Comput. Methods Appl. Mech. Eng.
,
291
, pp.
21
41
.
17.
Kim
,
S.
,
Choi
,
J. H.
, and
Kim
,
N. H.
,
2022
, “
Data-Driven Prognostics With Low-Fidelity Physical Information for Digital Twin: Physics-Informed Neural Network
,”
Struct. Multidiscipl. Optim.
,
65
(
9
), p.
255
.
18.
Wang
,
S.
,
Lai
,
X.
,
He
,
X.
,
Qiu
,
Y.
, and
Song
,
X.
,
2022
, “
Building a Trustworthy Product-Level Shape-Performance Integrated Digital Twin With Multifidelity Surrogate Model
,”
ASME J. Mech. Des.
,
144
(
3
), p.
031703
.
19.
Kapteyn
,
M. G.
,
Knezevic
,
D. J.
,
Huynh
,
D. B. P.
,
Tran
,
M.
, and
Willcox
,
K. E.
,
2022
, “
Data-Driven Physics-Based Digital Twins via a Library of Component-Based Reduced-Order Models
,”
Int. J. Numer. Methods Eng.
,
123
(
13
), pp.
2986
3003
. online real-time.
20.
Molinaro
,
R.
,
Singh
,
J. S.
,
Catsoulis
,
S.
,
Narayanan
,
C.
, and
Lakehal
,
D.
,
2021
, “
Embedding Data Analytics and CFD Into the Digital Twin Concept
,”
Comput. Fluids
,
214
, p.
104759
.
21.
Chakraborty
,
S.
,
Adhikari
,
S.
, and
Ganguli
,
R.
,
2021
, “
The Role of Surrogate Models in the Development of Digital Twins of Dynamic Systems
,”
Appl. Math. Model.
,
90
, pp.
662
681
.
22.
He
,
X.
,
Lai
,
X.
,
Li
,
K.
,
Wang
,
S.
,
Song
,
X.
, and
Sun
,
W.
,
2023
, “
Toward a Shape-Performance Integrated Digital Twin Based on Hybrid Reduced-Order Modeling for Engineering Structures
,”
Eng. Comput.
, pp.
1
19
.
23.
Courant
,
R.
, and
Hilbert
,
D.
,
2008
,
Methods of Mathematical Physics: Partial Differential Equations
,
John Wiley & Sons
,
Chichester, UK
.
24.
Newmark
,
N. M.
,
1959
, “
A Method of Computation for Structural Dynamics
,”
J. Eng. Mech. Div.
,
85
(
3
), pp.
67
94
.
25.
Rasheed
,
A.
,
San
,
O.
, and
Kvamsdal
,
T.
,
2020
, “
Digital Twin: Values, Challenges and Enablers From a Modeling Perspective
,”
IEEE Access
,
8
, pp.
21980
22012
.
26.
Raissi
,
M.
,
Perdikaris
,
P.
, and
Karniadakis
,
G. E.
,
2019
, “
Physics-Informed Neural Networks: A Deep Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equations
,”
J. Comput. Phys.
,
378
, pp.
686
707
.
27.
Cuomo
,
S.
,
Di Cola
,
V. S.
,
Giampaolo
,
F.
,
Rozza
,
G.
,
Raissi
,
M.
, and
Piccialli
,
F.
,
2022
, “
Scientific Machine Learning Through Physics–Informed Neural Networks: Where We Are and What’s Next
,”
J. Sci. Comput.
,
92
(
3
), p.
88
.
28.
Mignolet
,
M. P.
,
Przekop
,
A.
,
Rizzi
,
S. A.
, and
Spottswood
,
S. M.
,
2013
, “
A Review of Indirect/non-Intrusive Reduced Order Modeling of Nonlinear Geometric Structures
,”
J. Sound Vib.
,
332
(
10
), pp.
2437
2460
.
29.
Liu
,
Y.
,
Wang
,
S.
,
Zhou
,
Q.
,
Lv
,
L.
,
Sun
,
W.
, and
Song
,
X.
,
2022
, “
Modified Multifidelity Surrogate Model Based on Radial Basis Function With Adaptive Scale Factor
,”
Chin. J. Mech. Eng.
,
35
(
1
), pp.
1
15
.
30.
Özakça
,
M.
,
Hinton
,
E.
, and
Rao
,
N. V. R.
,
1992
, “
Comparison of Three-Dimensional Solid Elements in the Analysis of Plates
,”
Comput. Struct.
,
42
(
6
), pp.
953
968
.
31.
Tao
,
F.
,
Xiao
,
B.
,
Qi
,
Q.
,
Cheng
,
J.
, and
Ji
,
P.
,
2022
, “
Digital Twin Modeling
,”
J. Manuf. Syst.
,
64
, pp.
372
389
.
32.
He
,
X.
,
Lai
,
X.
,
Yang
,
L.
,
Zhang
,
F.
,
Zhou
,
D.
,
Song
,
X.
, and
Sun
,
W.
,
2022
, “
M-LFM: a Multi-Level Fusion Modeling Method for Shape-Performance Integrated Digital Twin of Complex Structure
,”
Front. Mech. Eng.
,
17
(
4
), p.
52
.
33.
Yao
,
J.
,
Qiu
,
X.
,
Zhou
,
Z.
,
Fu
,
Y.
,
Xing
,
F.
, and
Zhao
,
E.
,
2015
, “
Buckling Failure Analysis of All-Terrain Crane Telescopic Boom Section
,”
Eng. Fail. Anal.
,
57
, pp.
105
117
.
34.
Jin
,
R.
,
Chen
,
W.
, and
Simpson
,
T. W.
,
2001
, “
Comparative Studies of Metamodelling Techniques Under Multiple Modelling Criteria
,”
Struct. Multidiscipl. Optim.
,
23
(
1
), pp.
1
13
.
35.
Zhang
,
J.
,
Chowdhury
,
S.
, and
Messac
,
A.
,
2012
, “
An Adaptive Hybrid Surrogate Model
,”
Struct. Multidiscipl. Optim.
,
46
(
2
), pp.
223
238
.
36.
Park
,
K.
, and
Allen
,
M. S.
,
2021
, “
Quasi-Static Modal Analysis for Reduced Order Modeling of Geometrically Nonlinear Structures
,”
J. Sound Vib.
,
502
, p.
116076
.
37.
Azam
,
S. E.
, and
Mariani
,
S.
,
2013
, “
Investigation of Computational and Accuracy Issues in POD-Based Reduced Order Modeling of Dynamic Structural Systems
,”
Eng. Struct.
,
54
, pp.
150
167
.
38.
Lee
,
J.
,
Lee
,
J.
,
Cho
,
H.
,
Kim
,
E.
, and
Cho
,
M.
,
2021
, “
Reduced-Order Modeling of Nonlinear Structural Dynamical Systems via Element-Wise Stiffness Evaluation Procedure Combined With Hyper-Reduction
,”
Comput. Mech.
,
67
(
2
), pp.
523
540
.
You do not currently have access to this content.