Abstract

This paper presents a 3D material mask overlay topology optimization approach using truncated octahedron elements and spheroidal masks. Truncated octahedron elements provide face connectivity between two juxtaposed elements, thus eliminating singular solutions inherently. A novel meshing scheme with Tetra-Kai-Decaheral or TKD (generic case of truncated octahedron) elements is proposed. The scheme is extended to parameterized generic-shaped domains. Various benefits of implementing the elements are also highlighted, and the corresponding finite element is introduced. Spheroidal negative masks are employed to determine the material within the elements. Seven design variables define each mask. A material density formulation is proposed, and sensitivity analysis for gradient-based optimization is developed. fminconmatlab function is used for the optimization. The efficacy and success of the approach are demonstrated by solving structures and compliant mechanism design problems. Compliance is minimized for the former, whereas a multi-criteria arising due to flexibility and stiffness measures is extremized for optimizing the mechanisms. Convergence of the optimization is smooth. The volume constraint is satisfied and remains active at the end of the optimization.

References

1.
Norato
,
J. A.
,
2018
, “
Topology Optimization With Supershapes
,”
Struct. Multidiscipl. Optim.
,
58
(
2
), pp.
415
434
.
2.
Saxena
,
A.
,
2008
, “
A Material-Mask Overlay Strategy for Continuum Topology Optimization of Compliant Mechanisms Using Honeycomb Discretization
,”
ASME J. Mech. Des.
,
130
(
8
), p.
0823041
.
3.
Saxena
,
A.
,
2011
, “
Topology Design With Negative Masks Using Gradient Search
,”
Struct. Multidiscipl. Optim.
,
44
(
5
), pp.
629
649
.
4.
Saxena
,
R.
, and
Saxena
,
A.
,
2003
, “
“On Honeycomb Parameterization for Topology Optimization of Compliant Mechanisms
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Chicago, IL
,
Sept. 2–6
, Vol. 37009, pp.
975
985
.
5.
Langelaar
,
M.
,
2007
, “
The Use of Convex Uniform Honeycomb Tessellations in Structural Topology Optimization
,”
7th World Congress on Structural and Multidisciplinary Optimization
,
Seoul, South Korea
,
May 21–25
, pp.
2469
2478
.
6.
Talischi
,
C.
,
Paulino
,
G. H.
, and
Le
,
C. H.
,
2009
, “
Honeycomb Wachspress Finite Elements for Structural Topology Optimization
,”
Struct. Multidiscipl. Optim.
,
37
(
6
), pp.
569
583
.
7.
Kumar
,
P.
,
2023
, “
HoneyTop90: A 90-Line MATLAB Code for Topology Optimization Using Honeycomb Tessellation
,”
Optim. Eng.
,
24
(
2
), pp.
1433
1460
.
8.
Guo
,
X.
,
Zhang
,
W.
, and
Zhong
,
W.
,
2014
, “
Doing Topology Optimization Explicitly and Geometrically—A New Moving Morphable Components Based Framework
,”
ASME J. Appl. Mech.
,
81
(
8
), p.
081009
.
9.
Norato
,
J.
,
Bell
,
B.
, and
Tortorelli
,
D. A.
,
2015
, “
A Geometry Projection Method for Continuum-Based Topology Optimization With Discrete Elements
,”
Comput. Methods Appl. Mech. Eng.
,
293
, pp.
306
327
.
10.
Guo
,
X.
,
Zhang
,
W.
,
Zhang
,
J.
, and
Yuan
,
J.
,
2016
, “
Explicit Structural Topology Optimization Based on Moving Morphable Components (MMC) With Curved Skeletons
,”
Comput. Methods Appl. Mech. Eng.
,
310
, pp.
711
748
.
11.
Zhang
,
S.
,
Norato
,
J. A.
,
Gain
,
A. L.
, and
Lyu
,
N.
,
2016
, “
A Geometry Projection Method for the Topology Optimization of Plate Structures
,”
Struct. Multidiscipl. Optim.
,
54
(
5
), pp.
1173
1190
.
12.
Zhang
,
W.
,
Yang
,
W.
,
Zhou
,
J.
,
Li
,
D.
, and
Guo
,
X.
,
2017
, “
Structural Topology Optimization Through Explicit Boundary Evolution
,”
ASME J. Appl. Mech.
,
84
(
1
), p.
011011
.
13.
Zhang
,
W.
,
Li
,
D.
,
Yuan
,
J.
,
Song
,
J.
, and
Guo
,
X.
,
2017
, “
A New Three-Dimensional Topology Optimization Method Based on Moving Morphable Components (MMCs)
,”
Comput. Mech.
,
59
, pp.
647
665
.
14.
Eschenauer
,
H. A.
,
Kobelev
,
V. V.
, and
Schumacher
,
A.
,
1994
, “
Bubble Method for Topology and Shape Optimization of Structures
,”
Struct. Optim.
,
8
(
1
), pp.
42
51
.
15.
Wein
,
F.
,
Dunning
,
P. D.
, and
Norato
,
J. A.
,
2020
, “
A Review on Feature-Mapping Methods for Structural Optimization
,”
Struct. Multidiscipl. Optim.
,
62
(
4
), pp.
1597
1638
.
16.
Hoang
,
V.-N.
,
Wang
,
X.
, and
Nguyen-Xuan
,
H.
,
2021
, “
A Three-Dimensional Multiscale Approach to Optimal Design of Porous Structures Using Adaptive Geometric Components
,”
Compos. Struct.
,
273
, p.
114296
.
17.
Sigmund
,
O.
, and
Maute
,
K.
,
2013
, “
Topology Optimization Approaches: A Comparative Review
,”
Struct. Multidiscipl. Optim.
,
48
(
6
), pp.
1031
1055
.
18.
Huang
,
X.
, and
Xie
,
M.
,
2010
,
Evolutionary Topology Optimization of Continuum Structures: Methods and Applications
,
John Wiley & Sons
,
Hoboken, NJ
.
19.
Wang
,
M. Y.
,
Wang
,
X.
, and
Guo
,
D.
,
2003
, “
A Level Set Method for Structural Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
192
(
1–2
), pp.
227
246
.
20.
Saxena
,
A.
, and
Ananthasuresh
,
G.
,
2001
, “
Topology Synthesis of Compliant Mechanisms for Nonlinear Force-Deflection and Curved Path Specifications
,”
ASME J. Mech. Des.
,
123
(
1
), pp.
33
42
.
21.
Kumar
,
P.
, and
Saxena
,
A.
,
2015
, “
On Topology Optimization With Embedded Boundary Resolution and Smoothing
,”
Struct. Multidiscipl. Optim.
,
52
(
6
), pp.
1135
1159
.
22.
Kumar
,
P.
,
Sauer
,
R. A.
, and
Saxena
,
A.
,
2016
, “
Synthesis of C0 Path-Generating Contact-Aided Compliant Mechanisms Using the Material Mask Overlay Method
,”
ASME J. Mech. Des.
,
138
(
6
), p.
062301
.
23.
Kumar
,
P.
,
Saxena
,
A.
, and
Sauer
,
R. A.
,
2019
, “
Computational Synthesis of Large Deformation Compliant Mechanisms Undergoing Self and Mutual Contact
,”
ASME J. Mech. Des.
,
141
(
1
), p.
012302
.
24.
Kumar
,
P.
,
Sauer
,
R. A.
, and
Saxena
,
A.
,
2021
, “
On Topology Optimization of Large Deformation Contact-Aided Shape Morphing Compliant Mechanisms
,”
Mech. Mach. Theory
,
156
, p.
104135
.
25.
Singh
,
N.
,
Kumar
,
P.
, and
Saxena
,
A.
,
2020
, “
On Topology Optimization With Elliptical Masks and Honeycomb Tessellation With Explicit Length Scale Constraints
,”
Struct. Multidiscipl. Optim.
,
62
(
2
), pp.
1227
1251
.
26.
Kumar
,
P.
, and
Saxena
,
A.
,
2022
, “
An Improved Material Mask Overlay Strategy for the Desired Discreteness of Pressure-Loaded Optimized Topologies
,”
Struct. Multidiscipl. Optim.
,
65
(
10
), p.
304
.
27.
Sigmund
,
O.
,
1997
, “
On the Design of Compliant Mechanisms Using Topology Optimization
,”
J. Struct. Mech.
,
25
(
4
), pp.
493
524
.
28.
Yin
,
L.
, and
Ananthasuresh
,
G.
,
2003
, “
Design of Distributed Compliant Mechanisms
,”
Mech. Des. Struct. Mach.
,
31
(
2
), pp.
151
179
.
29.
Shephard
,
M. S.
, and
Georges
,
M. K.
,
1991
, “
Automatic Three-Dimensional Mesh Generation by the Finite Octree Technique
,”
Int. J. Numer. Methods Eng.
,
32
(
4
), pp.
709
749
.
30.
Yerry
,
M. A.
, and
Shephard
,
M. S.
,
1984
, “
Automatic Three-Dimensional Mesh Generation by the Modified-Octree Technique
,”
Int. J. Numer. Methods Eng.
,
20
(
11
), pp.
1965
1990
.
31.
Kota
,
S.
, and
Ananthasuresh
,
G.
,
1995
, “
Designing Compliant Mechanisms
,”
Mech. Eng. CIME
,
117
(
11
), pp.
93
97
.
32.
Saxena
,
A.
, and
Ananthasuresh
,
G.
,
2000
, “
On an Optimal Property of Compliant Topologies
,”
Struct. Multidiscipl. Optim.
,
19
(
1
), pp.
36
49
.
33.
Zhang
,
W.
,
Song
,
J.
,
Zhou
,
J.
,
Du
,
Z.
,
Zhu
,
Y.
,
Sun
,
Z.
, and
Guo
,
X.
,
2018
, “
Topology Optimization With Multiple Materials Via Moving Morphable Component (MMC) Method
,”
Int. J. Numer. Methods Eng.
,
113
(
11
), pp.
1653
1675
.
34.
Zhang
,
W.
,
Yuan
,
J.
,
Zhang
,
J.
, and
Guo
,
X.
,
2016
, “
A New Topology Optimization Approach Based on Moving Morphable Components (MMC) and the Ersatz Material Model
,”
Struct. Multidiscipl. Optim.
,
53
(
6
), pp.
1243
1260
.
35.
Zhang
,
W.
,
Chen
,
J.
,
Zhu
,
X.
,
Zhou
,
J.
,
Xue
,
D.
,
Lei
,
X.
, and
Guo
,
X.
,
2017
, “
Explicit Three Dimensional Topology Optimization Via Moving Morphable Void (MMV) Approach
,”
Comput. Methods Appl. Mech. Eng.
,
322
, pp.
590
614
.
36.
Nguyen
,
H.-D.
,
Hoang
,
V.-N.
, and
Jang
,
G.-W.
,
2020
, “
Moving Morphable Patches for Three-Dimensional Topology Optimization With Thickness Control
,”
Comput. Methods Appl. Mech. Eng.
,
368
, p.
113186
.
37.
Barequet
,
G.
, and
Har-Peled
,
S.
,
2001
, “
Efficiently Approximating the Minimum-Volume Bounding Box of a Point Set in Three Dimensions
,”
J. Algorithms
,
38
(
1
), pp.
91
109
.
38.
Gain
,
A. L.
,
Paulino
,
G. H.
,
Duarte
,
L. S.
, and
Menezes
,
I. F.
,
2015
, “
Topology Optimization Using Polytopes
,”
Comput. Methods Appl. Mech. Eng.
,
293
, pp.
411
430
.
39.
Chi
,
H.
,
Pereira
,
A.
,
Menezes
,
I. F.
, and
Paulino
,
G. H.
,
2020
, “
Virtual Element Method (VEM)-Based Topology Optimization: An Integrated Framework
,”
Struct. Multidiscipl. Optim.
,
62
(
3
), pp.
1089
1114
.
40.
Floater
,
M. S.
,
Kós
,
G.
, and
Reimers
,
M.
,
2005
, “
Mean Value Coordinates in 3D
,”
Comput. Aided Geom. Des.
,
22
(
7
), pp.
623
631
.
41.
Remacle
,
J.
,
Lambrechts
,
J.
, and
Seny
,
B.
,
2012
, “
Blossom-Quad: A Non-uniform Quadrilateral Mesh Generator Using a Minimum-Cost Perfect-Matching Algorithm
,”
Int. J. Numer. Methods Eng.
,
18
(
9
), pp.
1102
1119
.
42.
Kraus
,
M.
, and
Steinmann
,
P.
,
2012
, “
Finite Element Formulations for 3D Convex Polyhedral in Nonlinear Continuum Mechanics
,”
Comput. Assist. Methods Eng. Sci.
,
19
(
2
), pp.
121
134
.
43.
Warren
,
J.
,
1996
, “
Barycentric Coordinates for Convex Polytopes
,”
Adv. Comput. Math.
,
6
(
1
), pp.
97
108
.
44.
Hou
,
W.
,
Gai
,
Y.
,
Zhu
,
X.
,
Wang
,
X.
,
Zhao
,
C.
,
Xu
,
L.
,
Jiang
,
K.
, and
Hu
,
P.
,
2017
, “
Explicit Isogeometric Topology Optimization Using Moving Morphable Components
,”
Comput. Methods Appl. Mech. Eng.
,
326
, pp.
694
712
.
45.
Gao
,
J.
,
Xiao
,
M.
,
Zhang
,
Y.
, and
Gao
,
L.
,
2020
, “
A Comprehensive Review of Isogeometric Topology Optimization: Methods, Applications and Prospects
,”
Chin. J. Mech. Eng.
,
33
(
1
), pp.
1
14
.
46.
Rashid
,
M. M.
, and
Selimotic
,
M.
,
2006
, “
A Three-Dimensional Finite Element Method With Arbitrary Polyhedral Elements
,”
Int. J. Numer. Methods Eng.
,
67
(
2
), pp.
226
252
.
47.
Martin
,
S.
,
Kaufmann
,
P.
,
Botsch
,
M.
,
Wicke
,
M.
, and
Gross
,
M.
,
2008
, “
Polyhedral Finite Elements Using Harmonic Basis Functions
,”
Eurograph. Symp. Geom. Process.
,
27
(
5
), pp.
1521
1529
.
48.
Guo
,
X.
,
Zhang
,
W.
,
Zhang
,
J.
, and
Yuan
,
J.
,
2016
, “
Explicit Structural Topology Optimization Based on Moving Morphable Components (MMC) With Curved Skeletons
,”
Comput. Methods Appl. Mech. Eng.
,
310
, pp.
711
748
.
49.
Hoang
,
V. N.
, and
Jang
,
G. W.
,
2017
, “
Topology Optimization Using Moving Morphable Bars for Versatile Thickness Control
,”
Comput. Methods Appl. Mech. Eng.
,
317
, pp.
153
173
.
50.
Frecker
,
M. I.
,
Ananthasuresh
,
G. K.
,
Nishiwaki
,
S.
,
Kikuchi
,
N.
, and
Kota
,
S.
,
1997
, “
Topological Synthesis of Compliant Mechanisms Using Multi-Criteria Optimization
,”
ASME J. Appl. Mech.
,
119
(
2
), pp.
238
245
.
51.
Bendsøe
,
M. P.
, and
Sigmund
,
O.
,
1999
, “
Material Interpolation Schemes in Topology Optimization
,”
Arch. Appl. Mech.
,
69
(
9
), pp.
635
654
.
52.
Wang
,
S.
,
Sturler
,
E. D.
, and
Paulino
,
G. H.
,
2007
, “
Large-Scale Topology Optimization Using Preconditioned Krylov Subspace Methods With Recycling
,”
Int. J. Numer. Methods Eng.
,
69
(
12
), pp.
2441
2468
.
53.
2010
,
MATLAB: Version 7.10.0 (R2010a)
,
The MathWorks Inc
.,
Natick, MA
.
54.
Zhang
,
W.
,
Li
,
D.
,
Zhang
,
J.
, and
Guo
,
X.
,
2016
, “
Minimum Length Scale Control in Structural Topology Optimization Based on the Moving Morphable Components (MMC) Approach
,”
Comput. Methods Appl. Mech. Eng.
,
311
, pp.
327
355
.
55.
Zhang
,
W.
,
Yang
,
W.
,
Zhou
,
J.
,
Li
,
D.
, and
Guo
,
X.
,
2017
, “
Structural Topology Optimization Through Explicit Boundary Evolution
,”
ASME J. Appl. Mech.
,
84
(
1
), p.
011011
.
56.
Bourdin
,
B.
,
2001
, “
Filters in Topology Optimization
,”
Int. J. Numer. Methods Eng.
,
50
(
9
), pp.
2143
2158
.
57.
Hoang
,
V.-N.
, and
Nguyen-Xuan
,
H.
,
2020
, “
Extruded-Geometric-Component-Based 3d Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
371
, p.
113293
.
58.
Bruns
,
T. E.
, and
Tortorelli
,
D. A.
,
2003
, “
An Element Removal and Reintroduction Strategy for the Topology Optimization of Structures and Compliant Mechanisms
,”
Int. J. Numer. Methods Eng.
,
57
(
10
), pp.
1413
1430
.
59.
Cottrell
,
J. A.
,
Hughes
,
T. J.
, and
Bazilevs
,
Y.
,
2009
,
Isogeometric Analysis: Toward Integration of CAD and FEA
,
John Wiley & Sons
,
Hoboken, NJ
.
You do not currently have access to this content.