Abstract

This paper demonstrates the mechanical design, analysis, and evaluation of a knee-ankle orthosis (KAO) for lower limb rehabilitation, including shape memory alloy (SMA) actuators and DC brushless motor actuators. First, the mechanical structure of the KAO is detailed, including the actuator system, transmission mechanism, monitoring device, and processing method of SMA actuators. Next, the dynamic model of SMA spring actuators in the phase transition process is established based on the thermal constitutive model of SMA. In addition, the dynamic output response of the knee joint under three working states is analyzed, and the rotation angle of SMA soft actuator during bending is described by pseudo rigid body model. Finally, the output of SMA actuator is preliminarily evaluated through experiments. The experimental results show that the maximum displacement of SMA spring actuator is 54.36 mm, the maximum restoring force during phase transformation is 4.14 N, and the maximum rotation angle of SMA soft actuator is 43.18 deg. The experimental results are consistent with the theoretical model.

References

1.
Lo
,
H. S.
, and
Xie
,
S. Q.
,
2012
, “
Exoskeleton Robots for Upper-Limb Rehabilitation: State of the Art and Future Prospects
,”
Med. Eng. Phys.
,
34
(
3
), pp.
261
268
.
2.
Kim
,
B.
, and
Deshpande
,
A. D.
,
2017
, “
An Upper-Body Rehabilitation Exoskeleton Harmony With an Anatomical Shoulder Mechanism: Design, Modeling, Control, and Performance Evaluation
,”
Int. J. Rob. Res.
,
36
(
4
), pp.
414
435
.
3.
Ko
,
H. K.
,
Lee
,
S. W.
,
Koo
,
D. H.
,
Lee
,
I.
, and
Hyun
,
D. J.
,
2018
, “
Waist-Assistive Exoskeleton Powered by a Singular Actuation Mechanism for Prevention of Back-Injury
,”
Rob. Auton. Syst.
,
107
, pp.
1
9
.
4.
World Health Organization
,
2015
,
World Report on Ageing and Health
,
World Health Organization
,
Geneva, Switzerland
, Chap. 3.
5.
Meng
,
W.
,
Liu
,
Q.
,
Zhou
,
Z.
,
Ai
,
Q.
,
Sheng
,
B.
, and
Xie
,
S. S.
,
2015
, “
Recent Development of Mechanisms and Control Strategies for Robot-Assisted Lower Limb Rehabilitation
,”
Mechatronics
,
31
, pp.
132
145
.
6.
Li
,
Y.
,
Zi
,
B.
,
Yang
,
Z.
, and
Ge
,
J.
,
2021
, “
Combined Kinematic and Static Analysis of an Articulated Lower Limb Traction Device for a Rehabilitation Robotic System
,”
Sci. China Technol. Sci.
,
64
(
6
), pp.
51
64
.
7.
Kung
,
P. C.
,
Lin
,
C. C. K.
, and
Ju
,
M. S.
,
2010
, “
Neuro-Rehabilitation Robot-Assisted Assessments of Synergy Patterns of Forearm, Elbow and Shoulder Joints in Chronic Stroke Patients
,”
Clin. Biomech.
,
25
(
7
), pp.
1189
1202
.
8.
Andrysek
,
J.
,
Leineweber
,
M. J.
, and
Lee
,
H.
,
2017
, “
Development and Evaluation of a Mechanical Stance-Controlled Orthotic Knee Joint With Stance Flexion
,”
ASME J. Mech. Des.
,
139
(
3
), p.
035001
.
9.
Mattacola
,
C. G.
, and
Dwyer
,
M. K.
,
2002
, “
Rehabilitation of the Ankle After Acute Sprain or Chronic Instability
,”
J. Athl. Train.
,
37
(
4
), p.
413
.
10.
Mehrholz
,
J.
,
Hädrich
,
A.
,
Platz
,
T.
,
Kugler
,
J.
, and
Pohl
,
M.
,
2012
, “
Electromechanical and Robot-Assisted Arm Training for Improving Arm Function and Activities of Daily Living After Stroke
,”
Stroke
,
40
(
5
), pp.
392
393
.
11.
Satici
,
A. C.
,
Erdogan
,
A.
, and
Patoglu
,
V.
,
2009
, “
Design of a Reconfigurable Ankle Rehabilitation Robot and Its Use for the Estimation of the Ankle Impedance
,”
Proceedings of IEEE International Conference Rehabilitation Robotics
,
Kyoto, Japan
,
June 23–26
, pp.
257
264
.
12.
Fischer
,
H. C.
,
Stubblefield
,
K.
,
Kline
,
T.
,
Luo
,
X.
,
Kenyon
,
R. V.
, and
Kamper
,
D. G.
,
2007
, “
Hand Rehabilitation Following Stroke: A Pilot Study of Assisted Finger Extension Training in a Virtual Environment
,”
Top. Stroke Rehabil.
,
14
(
1
), pp.
1
12
.
13.
Dohring
,
M. E.
, and
Daly
,
J. J.
,
2008
, “
Automatic Synchronization of Functional Electrical Stimulation and Robotic Assisted Treadmill Training
,”
IEEE Trans. Neural. Syst. Rehabil. Eng.
,
16
(
3
), pp.
310
313
.
14.
Van Kammen
,
K.
,
Boonstra
,
A. M.
,
van der Woude
,
L. H.
,
Reinders-Messelink
,
H. A.
, and
den Otter
,
R.
,
2017
, “
The Combined Effects of Guidance Force, Bodyweight Support and Gait Speed on Muscle Activity During Able-Bodied Walking in the Lokomat
,”
Clin. Biomech.
,
36
, pp.
65
73
.
15.
Van Kammen
,
K.
,
Boonstra
,
A. M.
,
van der Woude
,
L. H.
,
Reinders-Messelink
,
H. A.
, and
den Otter
,
R.
,
2015
, “
Differences in Muscle Activity and Temporal Step Parameters Between Lokomat Guided Walking and Treadmill Walking in Post-Stroke Hemiparetic Patients and Healthy Walkers
,”
J. Neuroeng. Rehabil.
,
14
(
1
), pp.
1
11
.
16.
Meuleman
,
J.
,
van Asseldonk
,
E.
,
van Oort
,
G.
,
Rietman
,
H.
, and
van der Kooij
,
H.
,
2015
, “
LOPES II—Design and Evaluation of an Admittance Controlled Gait Training Robot With Shadow-Leg Approach
,”
IEEE Trans. Neural. Syst. Rehabil. Eng.
,
24
(
3
), pp.
352
363
.
17.
Zoss
,
A. B.
,
Kazerooni
,
H.
, and
Chu
,
A.
,
2006
, “
Biomechanical Design of the Berkeley Lower Extremity Exoskeleton (BLEEX)
,”
IEEE/ASME Trans. Mechatron.
,
11
(
2
), pp.
128
138
.
18.
Haider
,
U.
,
Nyoman
,
I. I.
,
Coronado
,
J. L.
,
Kim
,
C.
, and
Virk
,
G. S.
,
2016
, “
User-Centric Harmonized Control for Single Joint Assistive Exoskeletons
,”
Int. J. Adv. Rob. Syst.
,
13
(
3
), p.
115
.
19.
Tricomi
,
E.
,
Lotti
,
N.
,
Missiroli
,
F.
,
Zhang
,
X.
,
Xiloyannis
,
M.
,
Muller
,
T.
,
Crea
,
S
, et al
,
2021
, “
Underactuated Soft Hip Exosuit Based on Adaptive Oscillators to Assist Human Locomotion
,”
IEEE Robot Autom. Lett.
,
7
(
2
), pp.
936
943
.
20.
Chew
,
D. X.
,
Wood
,
K. L.
, and
Tan
,
U.
,
2019
, “
Design of a Passive Self-Regulating Gravity Compensator for Variable Payloads
,”
ASME J. Mech. Des.
,
141
(
10
), p.
102302
.
21.
Wang
,
D.
,
Xiong
,
Y.
,
Zi
,
B.
,
Qian
,
S.
,
Wang
,
Z.
, and
Zhu
,
W.
,
2021
, “
Design, Analysis and Experiment of a Passively Adaptive Underactuated Robotic Hand With Linkage-Slider and Rack-Pinion Mechanisms
,”
Mech. Mach. Theory
,
155
, p.
104092
.
22.
Chen
,
Q.
,
Zi
,
B.
,
Sun
,
Z.
,
Li
,
Y.
, and
Xu
,
Q.
2019
, “
Design and Development of a New Cable-Driven Parallel Robot for Waist Rehabilitation
,”
IEEE/ASME Trans. Mechatron.
,
24
(
4
), pp.
1497
1507
.
23.
Aguirre-Ollinger
,
G.
, and
Yu
,
H.
,
2020
, “
Lower-Limb Exoskeleton With Variable-Structure Series Elastic Actuators: Phase-Synchronized Force Control for Gait Asymmetry Correction
,”
IEEE Trans. Rob.
,
37
(
3
), pp.
763
779
.
24.
Chen
,
B.
,
Zi
,
B.
,
Wang
,
Z.
,
Li
,
Y.
, and
Qian
,
J.
,
2021
, “
Development of Robotic Ankle–Foot Orthosis With Series Elastic Actuator and Magneto-Rheological Brake
,”
ASME J. Mech. Rob.
,
13
(
1
), p.
011002
.
25.
Wang
,
J.
,
Moumni
,
Z.
,
Zhang
,
W.
, and
Zaki
,
W.
,
2017
, “
A Thermomechanically Coupled Finite Deformation Constitutive Model for Shape Memory Alloys Based on Hencky Strain
,”
Int. J. Sci.
,
117
, pp.
51
77
.
26.
Rodrigue
,
H.
,
Wang
,
W.
,
Han
,
M. W.
,
Kim
,
T. J.
, and
Ahn
,
S. H.
,
2017
, “
An Overview of Shape Memory Alloy-Coupled Actuators and Robots
,”
Soft Robot.
,
4
(
1
), pp.
3
15
.
27.
Xiang
,
C.
,
Yang
,
H.
,
Sun
,
Z.
,
Xue
,
B.
,
Hao
,
L.
,
Rahoman
,
M. A.
, and
Davis
,
S.
,
2017
, “
The Design, Hysteresis Modeling and Control of a Novel SMA-Fishing-Line Actuator
,”
Smart Mater. Struct.
,
26
(
3
), p.
037004
.
28.
Zhang
,
X.
,
Yan
,
X.
, and
Yang
,
Q
,
2017
, “
Design and Experimental Validation of Compact, Quick-Response Shape Memory Alloy Separation Device
,”
ASME J. Mech. Des.
,
136
(
1
), p.
011009
.
29.
Kim
,
H. I.
,
Han
,
M. W.
,
Song
,
S. H.
, and
Ahn
,
S. H.
,
2016
, “
Soft Morphing Hand Driven by SMA Tendon Wire
,”
Composites, Part B
,
105
, pp.
138
148
.
30.
White
,
E. L.
,
Case
,
J. C.
, and
Kramer-Bottiglio
,
R.
,
2018
, “
A Soft Parallel Kinematic Mechanism
,”
Soft Robot.
,
5
(
1
), pp.
36
53
.
31.
Zhang
,
S.
,
Liu
,
B.
,
Wang
,
L.
,
Yan
,
Q.
,
Low
,
K. H.
, and
Yang
,
J.
,
2014
, “
Design and Implementation of a Lightweight Bioinspired Pectoral Fin Driven by SMA
,”
IEEE/ASME Trans. Mechatron.
,
19
(
6
), pp.
1773
1785
.
32.
Koh
,
J. S.
, and
Cho
,
K. J.
,
2012
, “
Omega-Shaped Inchworm-Inspired Crawling Robot With Large-Index-and-Pitch (LIP) SMA Spring Actuators
,”
IEEE/ASME Trans. Mechatron.
,
18
(
2
), pp.
419
429
.
33.
Villoslada
,
A.
,
Flores
,
A.
,
Copaci
,
D.
,
Blanco
,
D.
, and
Moreno
,
L.
,
2015
, “
High-Displacement Flexible Shape Memory Alloy Actuator for Soft Wearable Robots
,”
Rob. Auton. Syst.
,
73
, pp.
91
101
.
34.
Simone
,
F.
,
Rizzello
,
G.
, and
Seelecke
,
S.
,
2017
, “
Metal Muscles and Nerves—A Self-Sensing SMA-Actuated Hand Concept
,”
Smart Mater. Struct.
,
26
(
9
), p.
095007
.
35.
Qiao
,
G.
,
Song
,
G.
,
Zhang
,
Y.
,
Zhang
,
J.
, and
Li
,
Z.
,
2016
, “
A Wheel-Legged Robot With Active Waist Joint: Design, Analysis, and Experimental Results
,”
J. Intell. Rob. Syst.
,
83
(
3
), pp.
485
502
.
36.
Erdogan
,
A.
,
Celebi
,
B.
,
Satici
,
A. C.
, and
Patoglu
,
V.
,
2017
, “
Assist On-Ankle: A Reconfigurable Ankle Exoskeleton With Series-Elastic Actuation
,”
Auton. Rob.
,
41
(
3
), pp.
743
758
.
37.
Stansfield
,
B.W
,
Hillman
,
S. J
,
Hazlewood
,
M. E
, and
Robb
,
J. E.
,
2006
,“
Regression Analysis of Gait Parameters With Speed in Normal Children Walking at Self-Selected Speeds
,”
Gait Posture
,
23
(
3
), pp.
288
294
.
38.
She
,
Y.
,
Chen
,
J.
,
Shi
,
H.
, and
Su
,
H. J.
,
2016
, “
Modeling and Validation of a Novel Bending Actuator for Soft Robotics Applications
,”
Soft Robot.
,
3
(
2
), pp.
71
81
.
39.
Ko
,
J.
,
Jun
,
M. B.
,
Gilardi
,
G.
,
Haslam
,
E.
, and
Park
,
E. J.
,
2011
, “
Fuzzy PWM-PID Control of Cocontracting Antagonistic Shape Memory Alloy Muscle Pairs in an Artificial Finger
,”
Mechatronics
,
21
(
7
), pp.
1190
1202
.
40.
Lagoudas
,
D. C.
, 2008,
Shape Memory Alloys: Modeling and Engineering Application
,
Springer Science & Business Media
,
TX
, Chap. 3.
41.
Grossard
,
M.
,
Chaillet
,
N.
, and
Régnier
,
S.
,
2013
,
Flexible Robotics: Applications to Multiscale Manipulations
,
John Wiley & Sons
,
Paris, France
, Chap. 6.
42.
Dutta
,
S. M.
, and
Ghorbel
,
F. H.
,
2005
, “
Differential Hysteresis Modeling of a Shape Memory Alloy Wire Actuator
,”
IEEE/ASME Trans. Mechatron.
,
10
(
2
), pp.
189
197
.
43.
Henein
,
S.
,
2001
,
Conception des guidages flexible
,
PPUR Presses Polytechniques
,
Bienne, Switzerland
, Chap. 3.
44.
Bruckmann
,
T.
, and
Pott
,
A.
,
2013
,
Cable-Driven Parallel Robots
,
Springer Science & Business Media
,
Berlin/Heidelberg
, Chap. 4.
You do not currently have access to this content.