A set-based approach is presented for exploring multilevel design problems. The approach is applied to design negative stiffness metamaterials with mechanical stiffness and loss properties that surpass those of conventional composites. Negative stiffness metamaterials derive their properties from their internal structure, specifically by embedding small volume fractions of negative stiffness inclusions in a continuous host material. Achieving high stiffness and loss from these materials by design involves managing complex interdependencies among design variables across a range of length scales. Hierarchical material models are created for length scales ranging from the structure of the microscale negative stiffness inclusions to the effective properties of mesoscale metamaterials to the performance of an illustrative macroscale component. Bayesian network classifiers (BNCs) are used to map promising regions of the design space at each hierarchical modeling level, and the maps are intersected to identify sets of multilevel solutions that are likely to provide desirable system performance. The approach is particularly appropriate for highly efficient, top-down, performance-driven, multilevel design, as opposed to bottom-up, trial-and-error multilevel modeling.

References

1.
Lakes
,
R.
,
2001
, “
Extreme Damping in Composite Materials With a Negative Stiffness Phase
,”
Phys. Rev. Lett.
,
86
(
13
), pp.
2897
2900
.
2.
Lakes
,
R. S.
,
Lee
,
T.
,
Bersie
,
A.
, and
Wang
,
Y. C.
,
2001
, “
Extreme Damping in Composite Materials With Negative-Stiffness Inclusions
,”
Nature
,
410
(
6828
), pp.
565
567
.
3.
Wojnar
,
C. S.
, and
Kochmann
,
D. M.
,
2014
, “
A Negative-Stiffness Phase in Elastic Composites Can Produce Stable Extreme Effective Dynamic but Not Static Stiffness
,”
Philosoph. Mag.
,
94
(
6
), pp.
532
555
.
4.
Fritzen
,
F.
, and
Kochmann
,
D. M.
,
2014
, “
Material Instability-Induced Extreme Damping in Composites: A Computational Study
,”
Int. J. Solids Struct.
,
51
(
23–24
), pp.
4101
4112
.
5.
Haberman
,
M. R.
,
Berthelot
,
Y. H.
, and
Cherkaoui
,
M.
,
2006
, “
Micromechanical Modeling of Particulate Composites for Damping of Acoustic Waves
,”
ASME J. Eng. Mater. Technol.
,
128
(
3
), pp.
320
329
.
6.
Koutsawa
,
Y.
,
Haberman
,
M. R.
,
Daya
,
E. M.
, and
Cherkaoui
,
M.
,
2008
, “
Multiscale Design of a Rectangular Sandwich Plate With Viscoelastic Core and Supported at Extents by Viscoelastic Materials
,”
Int. J. Mech. Mater. Des.
,
5
(
1
), pp.
29
44
.
7.
Klatt
,
T.
, and
Haberman
,
M. R.
,
2013
, “
A Nonlinear Negative Stiffness Metamaterial Unit Cell and Small-On-Large Multiscale Material Model
,”
J. Appl. Phys.
,
114
(
3
), p.
033503
.
8.
Fulcher
,
B. A.
,
Shahan
,
D. W.
,
Haberman
,
M. R.
,
Seepersad
,
C. C.
, and
Wilson
,
P. S.
,
2014
, “
Analytical and Experimental Investigation of Buckled Beams as Negative Stiffness Elements for Passive Vibration and Shock Isolation Systems
,”
ASME J. Vib. Acoust.
,
136
(
3
), p.
031009
.
9.
Ross
,
D.
,
Ungar
,
E.
, and
Kerwin
,
E.
,
1959
, “
Damping of Plate Flexural Vibrations by Means of Viscoelastic Laminae
,”
Struct. Damping
,
3
, pp.
44
87
.
10.
Haberman
,
M. R.
,
Klatt
,
T. D.
, and
Wilson
,
P. S.
,
2012
, “
Negative Stiffness Metamaterials and Periodic Composites
,”
J. Acoust. Soc. Am.
,
131
(
4
), p.
3372
.
11.
Sobek
,
D. K.
,
Ward
,
A. C.
, and
Liker
,
J. K.
,
1999
, “
Toyota's Principles of Set-Based Concurrent Engineering
,”
Sloan Manage. Rev.
,
40
(
2
), pp.
67
84
.
12.
Kim
,
H. M.
,
Michelena
,
N. F.
,
Papalambros
,
P. Y.
, and
Jiang
,
T.
,
2003
, “
Target Cascading in Optimal System Design
,”
ASME J. Mech. Des.
,
125
(
3
), pp.
474
480
.
13.
Haftka
,
R. T.
,
1985
, “
Simultaneous Analysis and Design
,”
AIAA J.
,
23
(
7
), pp.
1099
1103
.
14.
Sobieszczanski-Sobieski
,
J.
,
1988
, “
Optimization by Decomposition: A Step From Hierarchic to Non-Hierarchic Systems
,”
Second NASA/Air Force Symposium on Recent Advances in Multidisciplinary Analysis and Optimization
, Hampton, VA, Paper Nos. NASA TM–101494 and NASA CP–3031.
15.
Wujek
,
B. A.
,
Renaud
,
J. E.
,
Batill
,
S. M.
, and
Brockman
,
J. B.
,
1996
, “
Concurrent Subspace Optimization Using Design Variable Sharing in a Distributed Computing Environment
,”
Concurrent Eng.
,
4
(
4
), pp.
361
377
.
16.
Kroo
,
I.
,
Altus
,
S.
,
Braun
,
R.
,
Gage
,
P.
, and
Sobieski
,
I.
,
1994
, “
Multidisciplinary Optimization Methods for Aircraft Preliminary Design
,”
AIAA
Paper No. 94-4325.
17.
Sobieszczanski-Sobieski
,
J.
, and
Kodiyalam
,
S.
,
1999
, “
BLISS/S: A New Method for Two-Level Structural Optimization
,”
AIAA/ASME/ASCE/AHS/ASC
Structural Dynamics, and Materials Conference
, St. Louis, MO, Vol.
21
, pp.
1
13
.
18.
Chen
,
W.
,
Yin
,
X.
,
Lee
,
S.
, and
Liu
,
W. K.
,
2010
, “
A Multiscale Design Methodology for Hierarchical Systems With Random Field Uncertainty
,”
ASME J. Mech. Des.
,
132
(
4
), p.
041006
.
19.
Chang
,
T. S.
,
Ward
,
A. C.
,
Lee
,
J.
, and
Jacox
,
E. H.
,
1994
, “
Conceptual Robustness in Simultaneous Engineering: An Extension of Taguchi's Parameter Design
,”
Res. Eng. Des.
,
6
(
4
), pp.
211
222
.
20.
Chen
,
W.
, and
Lewis
,
K.
,
1999
, “
A Robust Design Approach for Achieving Flexibility in Multidisciplinary Design
,”
AIAA J.
,
37
(
8
), pp.
982
989
.
21.
Kalsi
,
M.
,
Hacker
,
K.
, and
Lewis
,
K.
,
2001
, “
A Comprehensive Robust Design Approach for Decision Trade-Offs in Complex Systems Design
,”
ASME J. Mech. Design
,
123
(
1
), pp.
1
10
.
22.
Liu
,
H.
,
Chen
,
W.
,
Scott
,
M. J.
, and
Qureshi
,
K.
,
2008
, “
Determination of Ranged Sets of Design Specifications by Incorporating Design-Space Heterogeneity
,”
Eng. Optim.
,
40
(
11
), pp.
1011
1029
.
23.
Panchal
,
J. H.
,
Gero Fernandez
,
M.
,
Paredis
,
C. J. J.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
2007
, “
An Interval-Based Constraint Satisfaction (IBCS) Method for Decentralized, Collaborative Multifunctional Design
,”
Concurrent Eng.: Res. Appl.
,
15
(
3
), pp.
309
323
.
24.
Choi
,
H.
,
McDowell
,
D. L.
,
Allen
,
J. K.
,
Rosen
,
D.
, and
Mistree
,
F.
,
2008
, “
An Inductive Design Exploration Method for Robust Multiscale Materials Design
,”
ASME J. Mech. Des.
,
130
(
3
), p.
031402
.
25.
Olson
,
G. B.
,
1997
, “
Computational Design of Hierarchically Structured Materials
,”
Science
,
277
(
5330
), pp.
1237
1242
.
26.
McDowell
,
D. L.
, and
Olson
,
G. B.
,
2009
, “
Concurrent Design of Hierarchical Materials and Structures
,”
Scientific Modeling and Simulations
,
Springer
,
Dordrecht, The Netherlands
, pp.
207
240
.
27.
Scott
,
D. W.
,
1992
,
Multivariate Density Estimates
,
Wiley
,
New York
.
28.
Hoffmann
,
R.
, and
Tresp
,
V.
,
1996
, “
Discovering Structure in Continuous Variables Using Bayesian Networks
,”
Advances in Neural Information Processing Systems 8
, MIT Press, Cambridge, MA, pp.
500
506
.
29.
John
,
G.
, and
Langley
,
P.
,
1995
, “
Estimating Continuous Distributions in Bayesian Classifiers
,”
Eleventh Conference on Uncertainty in Artificial Intelligence
, pp.
338
345
.
30.
Bosman
,
P.
, and
Thierens
,
D.
,
2000
, “
IDEAs Based on the Normal Kernels Probability Density Function
,” Utrecht University Technical Report No. UU-CS-2000-11.
31.
Pérez
,
A.
,
Larrañaga
,
P.
, and
Inza
,
I.
,
2009
, “
Bayesian Classifiers Based on Kernel Density Estimation: Flexible Classifiers
,”
Int. J. Approx. Reason.
,
50
(
2
), pp.
341
362
.
32.
Shahan
,
D. W.
, and
Seepersad
,
C. C.
,
2012
, “
Bayesian Network Classifiers for Set-Based Collaborative Design
,”
ASME J. Mech. Des.
,
134
(
7
), p.
071001
.
33.
Dudda
,
R. O.
,
Hart
,
P. E.
, and
Stork
,
D. G.
,
2001
,
Pattern Classification
, 2nd ed.,
Wiley
,
New York
.
34.
Kovar
,
D.
,
King
,
B. H.
,
Trice
,
R. W.
, and
Halloran
,
J. W.
,
1997
, “
Fibrous Monolithic Ceramics
,”
J. Am. Ceram. Soc.
,
80
(
10
), pp.
2471
2487
.
35.
Odegard
,
G. M.
,
2004
, “
Constitutive Modeling of Piezoelectric Polymer Composites
,”
Acta Mater.
,
52
(
18
), pp.
5315
5330
.
36.
Halton
,
J. H.
,
1960
, “
On the Efficiency of Certain Quasi-Random Sequences of Points in Evaluating Multi-Dimensional Integrals
,”
Numer. Math.
,
2
(
1
), pp.
84
90
.
37.
Matthews
,
J. L.
,
2013
, “
A Bayesian Network Classifier for Quantifying Design and Performance Flexibility With Application to a Hierarchical Metamaterial Design
,”
M.S. thesis
, Mechanical Engineering Department, The University of Texas at Austin, Austin, TX.
38.
Milton
,
G. W.
,
2002
,
The Theory of Composites
,
Cambridge University Press
,
New York
.
39.
Voigt
,
W.
,
1889
, “
Uber die Beziehung Zurischen den Beiden Elastizitäts Konstanten Isotroperkörper
,”
Wied. Ann.
,
38
, pp.
573
587
.
40.
Backlund
,
P.
,
Shahan
,
D. W.
, and
Seepersad
,
C. C.
,
2015
, “
Classifier-Guided Sampling for Discrete Variable, Discontinuous Design Space Exploration: Convergence and Computational Performance
,”
Eng. Optim.
,
47
(
5
), pp.
579
600
.
41.
Kalsi
,
M.
,
Hacker
,
K.
, and
Lewis
,
K.
,
2001
, “
A Comprehensive Robust Design Approach for Decision Trade-Offs in Complex Systems Design
,”
ASME J. Mech. Des.
,
123
(
1
), pp.
1
10
.
42.
Wojnar
,
C. S.
, and
Kochmann
,
D. M.
,
2014
, “
A Negative-Stiffness Phase in Elastic Composites Can Produce Stable Extreme Effective Dynamic But Not Static Stiffness
,”
Philos. Mag.
,
94
(
6
), pp.
532
555
.
You do not currently have access to this content.