This work develops an envelope approach to time-dependent mechanism reliability defined in a period of time where a certain motion output is required. Since the envelope function of the motion error is not explicitly related to time, the time-dependent problem can be converted into a time-independent problem. The envelope function is approximated by piecewise hyperplanes. To find the expansion points for the hyperplanes, the approach linearizes the motion error at the means of random dimension variables, and this approximation is accurate because the tolerances of the dimension variables are small. The expansion points are found with the maximum probability density at the failure threshold. The time-dependent mechanism reliability is then estimated by a multivariable normal distribution at the expansion points. As an example, analytical equations are derived for a four-bar function generating mechanism. The numerical example shows the significant accuracy improvement.

References

1.
Issac
,
K. K.
,
1993
, “
A Nondifferentiable Optimization Algorithm for Constrained Minimax Linkage Function Generation
,”
ASME J. Mech. Des.
,
115
(
4
), pp.
978
988
.10.1115/1.2919296
2.
Aviles
,
J. V.
,
Hernández
,
A.
, and
Amezua
,
E.
,
1995
, “
Nonlinear Optimization of Planar Linkages for Kinematic Syntheses
,”
Mech. Mach. Theory
,
30
(
4
), pp.
501
518
.10.1016/0094-114X(94)00064-R
3.
Simionescu
,
P. A.
, and
Beale
,
D.
,
2002
, “
Optimum Synthesis of the Four-Bar Function Generator in Its Symmetric Embodiment: The Ackermann Steering Linkage
,”
Mech. Mach. Theory
,
37
(
12
), pp.
1487
1504
.10.1016/S0094-114X(02)00071-X
4.
Mariappan
,
J.
, and
Krishnamurty
,
S.
,
1996
, “
A Generalized Exact Gradient Method for Mechanism Synthesis
,”
Mech. Mach. Theory
,
31
(
4
), pp.
413
421
.10.1016/0094-114X(95)00077-C
5.
Rao
,
A. C.
,
1979
, “
Synthesis of 4-Bar Function-Generators Using Geometric Programming
,”
Mech. Mach. Theory
,
14
(
2
), pp.
141
149
.10.1016/0094-114X(79)90029-6
6.
Mallik
,
A. K.
,
Ghosh
,
A.
, and
Dittrich
,
G.
,
1994
,
Kinematic Analysis and Synthesis of Mechanisms
,
CRC-Press
, Boca Raton, FL.
7.
Zhu
,
J.
, and
Ting
,
K.-L.
,
2000
, “
Uncertainty Analysis of Planar and Spatial Robots With Joint Clearances
,”
Mech. Mach. Theory
,
35
(
9
), pp.
1239
1256
.10.1016/S0094-114X(99)00076-2
8.
Baumgarten
,
J. R.
, and
Werff
,
K. V. D.
,
1985
, “
A Probabilistic Study Relating to Tolerancing and Path Generation Error
,”
Mech. Mach. Theory
,
20
(
1
), pp.
71
76
.10.1016/0094-114X(85)90059-X
9.
S. G.
Dhande
, J. C.,
1973
, “
Analysis and Synthesis of Mechanical Error in Linkages—A Stochastic Approach
,”
ASME J. Eng. Ind
.,
95
(
3
), pp.
672
676
.10.1115/1.3438208
10.
Wei-Liang
,
X.
, and
Qi-Xian
,
Z.
,
1989
, “
Probabilistic Analysis and Monte Carlo Simulation of the Kinematic Error in a Spatial Linkage
,”
Mech. Mach. Theory
,
24
(
1
), pp.
19
27
.10.1016/0094-114X(89)90078-5
11.
Dubowsky
,
S.
,
Norris
,
M.
,
Aloni
,
M.
, and
Tamir
,
A.
,
1984
, “
An Analytical and Experimental Study of the Prediction of Impacts in Planar Mechanical Systems With Clearances
,”
ASME J. Mech., Des.
,
106
(
4
), pp.
444
451
.10.1115/1.3258592
12.
Parenti-Castelli
,
V.
, and
Venanzi
,
S.
,
2005
, “
Clearance Influence Analysis on Mechanisms
,”
Mechanism and Machine Theory
,
40
(
12
), pp.
1316
1329
.10.1016/j.mechmachtheory.2005.04.002
13.
Tsaia
,
M.-J.
, and
Lai
,
T.-H.
,
2008
, “
Accuracy Analysis of a Multi-Loop Linkage With Joint Clearances
,”
Mech. Mach. Theory
,
43
(
9
), pp.
1141
1157
.10.1016/j.mechmachtheory.2007.09.001
14.
Zhen
,
H.
,
1987
, “
Error Analysis of Position and Orientation in Robot Manipulators
,”
Mech. Mach. Theory
,
22
(
6
), pp.
577
581
.10.1016/0094-114X(87)90053-X
15.
Rajagopalan
,
S.
, and
Cutkosky
,
M.
,
2003
, “
Error Analysis for the in-Situ Fabrication of Mechanisms
,”
ASME J. Mech. Des.
,
125
(
4
), pp.
809
822
.10.1115/1.1631577
16.
Sergeyev
,
V. I.
,
1974
, “
Methods for Mechanism Reliability Calculation
,”
Mech. Mach. Theory
,
9
(
1
), pp.
97
106
.10.1016/0094-114X(74)90010-X
17.
Bhatti
,
P.
,
1989
, “
Probabilistic Modeling and Optimal Design of Robotic Manipulators
,”
Ph.D.
thesis, Purdue University, West Lafayette, IN.
18.
Shi
,
Z.
,
Yang
,
X.
,
Yang
,
W.
, and
Cheng
,
Q.
,
2005
, “
Robust Synthesis of Path Generating Linkages
,”
Mech. Mach. Theory
,
40
(
1
), pp.
45
54
.10.1016/j.mechmachtheory.2004.05.008
19.
Shi
,
Z.
,
1997
, “
Synthesis of Mechanical Error in Spatial Linkages Based on Reliability Concept
,”
Mech. Mach. Theory
,
32
(
2
), pp.
255
259
.10.1016/S0094-114X(96)00049-3
20.
Du
,
X.
,
Venigella
,
P. K.
, and
Liu
,
D.
,
2009
, “
Robust Mechanism Synthesis With Random and Interval Variables
,”
Mech. Mach. Theory
,
44
(
7
), pp.
1321
1337
.10.1016/j.mechmachtheory.2008.10.003
21.
Du
,
X.
,
1996
, “
Reliability Synthesis for Mechanism
,”
Mach. Des.
,
13
(
1
), pp.
8
11
.
22.
Rao
,
S. S.
, and
Bhatti
,
P. K.
,
2001
, “
Probabilistic Approach to Manipulator Kinematics and Dynamics
,”
Reliab. Eng. Syst. Saf.
,
72
(
1
), pp.
47
58
.10.1016/S0951-8320(00)00106-X
23.
Liu
,
T. S.
, and
Wang
,
J. D.
,
1994
, “
A Reliability Approach to Evaluating Robot Accuracy Performance
,”
Mech. Mach. Theory
,
29
(
1
), pp.
83
94
.10.1016/0094-114X(94)90022-1
24.
Bhatti
,
P. K.
, and
Rao
,
S. S.
,
1988
, “
Reliability Analysis of Robot Manipulators
,”
ASME J. Mech. Des.
,
110
(
2
), pp.
175
181
.10.1115/1.3258923
25.
Kim
,
J.
,
Song
,
W.-J.
, and
Kang
,
B.-S.
,
2010
, “
Stochastic Approach to Kinematic Reliability of Open-Loop Mechanism With Dimensional Tolerance
,”
Appl. Math. Model.
,
24
(
5
), pp.
1225
1237
.10.1016/j.apm.2009.08.009
26.
Bowlin
,
A. P.
,
Renaud
,
J. E.
,
Newkirk
,
J. T.
, and
Patel
,
N. M.
,
2007
, “
Reliability-Based Design Optimization of Robotic System Dynamic Performance
,”
ASME J. Mech. Des.
,
129
(
4
), pp.
449
455
.10.1115/1.2437804
27.
Yaofei
,
T.
,
Jianjun
,
C.
,
Chijiang
,
Z.
, and
Yongqin
,
C.
,
2007
, “
Reliability Analysis of Kinematic Accuracy for the Elastic Slider-Crank Mechanism
,”
Front. Mech. Eng. China
,
2
(
2
), pp.
214
217
.10.1007/s11465-007-0037-3
28.
Howell
,
L. L.
,
Rao
,
S. S.
, and
Midha
,
A.
,
1994
, “
Reliability-Based Optimal Design of a Bistable Compliant Mechanism
,”
ASME J. Mech. Des.
,
116
(
4
), pp.
1115
1221
.10.1115/1.2919495
29.
Zhang
,
J.
,
Wang
,
J.
, and
Du
,
X.
,
2011
, “
Time-Dependent Probabilistic Synthesis for Function Generator Mechanisms
,”
Mech. Mach. Theory
,
46
(
9
), pp.
1236
1250
.10.1016/j.mechmachtheory.2011.04.008
30.
Sudret
,
B.
,
2008
, “
Analytical Derivation of the Outcrossing Rate in Time-Variant Reliability Problems
,”
Struct. Infrastruct. Eng.
,
4
(
5
), pp.
353
362
.10.1080/15732470701270058
31.
Li
,
J.
,
Chen
,
J.-B.
, and
Fan
,
W.-L.
,
2007
, “
The Equivalent Extreme-Value Event and Evaluation of the Structural System Reliability
,”
Struct. Saf.
,
29
(
2
), pp.
112
131
.10.1016/j.strusafe.2006.03.002
32.
Chen
,
J.-B.
, and
Li
,
J.
,
2007
, “
The Extreme Value Distribution and Dynamic Reliability Analysis of Nonlinear Structures With Uncertain Parameters
,”
Struct. Saf.
,
29
(
2
), pp.
77
93
.10.1016/j.strusafe.2006.02.002
33.
Lutes
,
L. D. A. S.
,
2004
,
Random Vibrations: Analysis of Structural and Mechanical Systems
,
Elsevier, Butterworth, Heinemann
, Burlington, MA.
34.
Li
,
J.
, and
Mourelatos
,
Z. P.
,
2009
, “
Time-Dependent Reliability Estimation for Dynamic Problems Using a Niching Genetic Algorithm
,”
ASME J. Mech. Des.
,
131
(
7
), pp.
1009
1022
.10.1115/1.3149842
35.
Wang
,
Z.
, and
Wang
,
P.
,
2012
, “
A Nested Extreme Response Surface Approach for Time-Dependent Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
,
134
(
12
), p.
121007
.10.1115/1.4007931
36.
Breitung
,
K.
,
1988
, “
Asymptotic Crossing Rates for Stationary Gaussian Vector Processes
,”
Stoch. Process. Appl.
,
29
(
2
), pp.
195
207
.10.1016/0304-4149(88)90037-3
37.
Breitung
,
K.
,
1993
, “
Asymptotic Approximations for the Crossing Rates of Poisson Square Waves
,”
Proceedings of the Conference on Extreme Value Theory and Applications
,
NIST Special Publication, Gaithersburg
,
MD, Vol. 3
, pp.
75
80
.
38.
Rackwitz
,
R.
,
1997
, “
Time-Variant Reliability for Non-Stationary Processes by the Outcrossing Approach
,”
Probabilistic Methods for Structural Design, Solid Mechanics and Its Applications
, Vol.
56
, Springer, The Netherlands, pp.
245
260
.
39.
Schrupp
,
K.
, and
Rackwitz
,
R.
,
1988
, “
Outcrossing Rates of Marked Poisson Cluster Processes in Structural Reliability
,”
Appl. Math. Model.
,
12
(
5
), pp.
482
490
.10.1016/0307-904X(88)90085-6
40.
Andrieu-Renaud
,
C.
,
Sudret
,
B.
, and
Lemaire
,
M.
,
2004
, “
The PHI2 Method: A Way to Compute Time-Variant Reliability
,”
Reliab. Eng. Syst. Saf.
,
84
(
1
), pp.
75
86
.10.1016/j.ress.2003.10.005
41.
Lutes
,
L. D.
, and
Sarkani
,
S.
,
2009
, “
Reliability Analysis of Systems Subject to First-Passage Failure
,” NASA Langley Research Center, Technical Report No. NASA/CR-2009-215782.
42.
Hagen
,
O.
, and
Tvedt
,
L.
,
1991
, “
Vector Process Out-Crossing as Parallel System Sensitivity Measure
,”
J. Eng. Mech.
,
117
(
10
), pp.
2201
2220
.10.1061/(ASCE)0733-9399(1991)117:10(2201)
43.
Rice
,
S. O.
,
1944
, “
Mathematical Analysis of Random Noise
,”
Bell Syst. Tech. J.
,
23
(
3
), pp.
282
332
.10.1002/j.1538-7305.1944.tb00874.x
44.
Rackwitz
,
R.
,
2001
, “
Reliability Analysis—A Review and Some Perspectives
,”
Struct. Saf.
,
23
(
4
), pp.
365
395
.10.1016/S0167-4730(02)00009-7
45.
Hu
,
Z.
, and
Du
,
X.
,
2013
, “
Time-Dependent Reliability Analysis With Joint Upcrossing Rates
,”
Struct. Multidiscip. Optim.
,
48
(
5
), pp.
893
907
.10.1007/s00158-013-0937-2
46.
Wang
,
Z.
,
Mourelatos
,
Z. P.
,
Li
,
J.
,
Baseski
, I
.
, and
Singh
,
A.
,
2014
, “
Time-Dependent Reliability of Dynamic Systems Using Subset Simulation With Splitting Over a Series of Correlated Time Intervals
,”
ASME J. Mech. Des.
,
136
(
6
), p.
061008
.10.1115/1.4027162
You do not currently have access to this content.