Key parameters may be used to turn a bad design into a good design with comparatively little effort. The proposed method identifies key parameters in high-dimensional nonlinear systems that are subject to uncertainty. A numerical optimization algorithm seeks a solution space on which all designs are good, that is, they satisfy a specified design criterion. The solution space is box-shaped and provides target intervals for each parameter. A bad design may be turned into a good design by moving its key parameters into their target intervals. The solution space is computed so as to minimize the effort for design work: its shape is controlled by particular constraints such that it can be reached by changing only a small number of key parameters. Wide target intervals provide tolerance against uncertainty, which is naturally present in a design process, when design parameters are unknown or cannot be controlled exactly. In a simple two-dimensional example problem, the accuracy of the algorithm is demonstrated. In a high-dimensional vehicle crash design problem, an underperforming vehicle front structure is improved by identifying and appropriately changing a relevant key parameter.

References

1.
Saltelli
,
A.
,
Chan
,
K.
, and
Scott
,
E.
,
2000
,
Sensitivity Analysis
,
Wiley
,
New York
.
2.
Sudret
,
B.
,
2007
, “
Global Sensitivity Analysis Using Polynomial Chaos Expansions
,”
Reliab. Eng. Syst. Saf.
,
93
,
964
979
.10.1016/j.ress.2007.04.002
3.
Wagner
,
S.
,
2007
, “
Global Sensitivity Analysis of Predictor Models in Software Engineering
,” PROMISE 07, Proceedings of the Third International Workshop on Predictor Models in Software Engineering, IEEE Computer Society, Washington, DC.
4.
Sobol
,
I.
,
1993
, “
Sensitivity Analysis for Nonlinear Mathematical Models
,”
Math. Modell. Comput. Exp.
,
1
(
4
), pp.
407
414
.
5.
Beyer
,
H.-G.
, and
Sendhoff
,
B.
,
2007
, “
Robust Optimization. A Comprehensive Survey
,”
Comput. Methods Appl. Mech. Eng.
,
196
, pp.
3190
3218
.10.1016/j.cma.2007.03.003
6.
Zimmermann
,
M.
, and
von Hoessle
,
J.
,
2013
, “
Computing Solution Spaces for Robust Design
,”
Int. J. Numer. Methods Eng.
,
94
, pp.
290
307
.10.1002/nme.4450
7.
Graff
,
L.
,
Harbrecht
,
H.
, and
Zimmermann
,
M.
,
2012
, “
On the Computation of Solution Spaces in High Dimensions
,” Preprint SPP1253-138, DFG Priority Program 1253, University of Erlangen, Erlangen, Germany.
8.
Zimmermann
,
M.
,
2013
, “
Vehicle Front Crash Design Accounting for Uncertainties
,”
Proceedings of the FISITA 2012 World Automotive Congress
, Vol.
197
, pp.
83
89
.
9.
Bernstein
,
J.
,
1998
, “
Design Methods in the Aerospace Industry: Looking for Evidence of Set-Based Practices
,” Master thesis, Massachusetts Institute of Technology, Cambridge, MA.
10.
Sobek
,
D.
,
Ward
,
A.
, and
Liker
,
J.
,
1999
, “
Toyota's Principles of Set-Based Concurrent Engineering
,” Sloan Management Review.
11.
McKenny
,
T.
,
Kemink
,
L.
, and
Singer
,
D.
,
2011
, “
Adapting to Changes in Design Requirements Using Set-Based Design
,”
Naval Eng. J.
,
123
(
3
), pp.
66
77
.10.1111/j.1559-3584.2011.00331.x
12.
Singer
,
D. J.
,
Doerry
,
N.
, and
Buckley
,
M.
,
2009
, “
What is Set-Based Design?
,”
Naval Eng. J.
,
121
(
4
), pp.
31
43
.10.1111/j.1559-3584.2009.00226.x
13.
Ward
,
A.
, and
Seering
,
W.
,
1989
, “
Quantitative Inference in a Mechanical Design Compiler
,” A.I. Memo, Vol. 1062, Massachusetts Institute of Technology, Cambridge, MA.
14.
Ward
,
A.
,
1989
, “
A Theory of Quantitative Inference Applied to a Mechanical Design Compiler
,” Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.
15.
Panchal
,
J.
,
Fernandez
,
M.
,
Allen
,
J.
,
Paredis
,
C.
, and
Mistree
,
F.
,
2005
, “
An Interval-Based Focalization Method for Decision-Making in Decentralized, Multi-Functional Design
,”
ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Long Beach, CA.
16.
Hannapel
,
S.
,
Vlahopoulos
,
N.
, and
Singer
,
D. J.
,
2012
, “
A Set-Based System for Eleminating Infeasible Designs in Engineering Problems Dominated by Uncertainty
,”
Proceedings of the 12th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference and 14th AIAA/ISSM
, Indianapolis, IN.
17.
Finch
,
W.
, and
Ward
,
A.
,
1997
, “
Set-Based System for Eliminating Infeasible Designs in Engineering Problems Dominated by Uncertainty
,”
ASME 1997 Design Engineering Technical Conferences
, Sacramento, CA.
18.
Moore
,
R. E.
,
1966
,
Interval Analysis
,
Prentice-Hall
,
Englewood Cliff, NJ
.
19.
Malak
,
R. J.
, and
Paredis
,
C.
, “
Modeling Design Concepts Under Risk and Uncertainty Using Parameterized Efficient Sets
,”
Int. J. Mater. Manuf.
,
1
(
1
), pp.
339
352
.
20.
Fender
,
J.
,
Duddeck
,
F.
, and
Zimmermann
,
M.
,
2013
, “
On the Calibration of Simplified Vehicle Crash Models
,”
Struct. Multidiscip. Optim.
Springer, Berlin Heidelberg.10.1007/s00158-013-0977-7
21.
Storn
,
R.
, and
Price
,
K.
,
1997
, “
Differential Evolution. A Simple and Efficient Heuristic for Global Optimization Over Continuous Spaces
,”
J. Global Optim.
,
11
, pp.
341
359
.10.1023/A:1008202821328
22.
Siebertz
,
K.
,
van Bebber
,
D.
, and
Hochkirchen
,
T.
,
2010
,
Statistische Versuchsplanung: Design of Experiments (DoE)
,
Springer
,
Berlin Heidelberg
.
23.
Lehar
,
M.
, and
Zimmermann
,
M.
,
2012
, “
An Inexpensive Estimate of Failure Probability for High-Dimensional Systems With Uncertainty
,”
Struct. Saf.
,
36–37
, pp.
32
38
.10.1016/j.strusafe.2011.10.001
24.
Kerstan
,
H.
, and
Bartelheimer
,
W.
,
2009
, “
Innovative Prozesse und Methoden in der Funktionsauslegung—Auslegung fuer den Frontcrash
,” Fahrzeugsicherheit, VDI-Berichte, Vol. 2078.
You do not currently have access to this content.