This paper develops a kinematic model to predict the axial migration of the rollers relative to the nut in the planetary roller screw mechanism (PRSM). This axial migration is an undesirable phenomenon that can cause binding and eventually lead to the destruction of the mechanism. It is shown that this migration is due to slip at the nut–roller interface, which is caused by a pitch mismatch between the spur-ring gear and the effective nut– roller helical gear pairs. This pitch circle mismatch can be due to manufacturing errors, deformations of the mechanism due to loading, and uncertainty in the radii of contact between the components. This paper derives the angle through which slip occurs and the subsequent axial migration of the roller. It is shown that this roller migration does not affect the overall lead of the PRSM. In addition, the general orbital mechanics, in-plane slip velocity at the nut–roller interface, and the axial slip velocities at the nut–roller and the screw–roller interfaces are also derived. Finally, an example problem is developed using a range of pitch mismatch values for the given roller screw dimensions, and the axial migration and slip velocities are determined.

References

1.
Strandgren
,
C. B.
, 1954, “
Screw-Threaded Mechanism
,” U.S. Patent No. 2,683,379.
2.
Andrade
,
A.
,
Nicolosi
,
D.
,
Lucchi
,
J.
,
Biscegli
,
J.
,
Arruda
,
A. C. F.
,
Ohashi
,
Y.
,
Mueller
,
J.
,
Tayama
,
E.
,
Glueck
,
J.
, and
Nosé
,
Y.
, 2001, “
Auxiliary Total Artificial Heart: A Compact Electromechanical Artificial Heart Working Simultaneously With the Natural Heart
,”
Artif. Organs
,
23
(
9
), pp.
876
880
.
3.
Richenbacher
,
W. E.
,
Pae
,
W. E.
, Jr.
,
Magovern
,
J. A.
,
Rosenberg
,
G.
,
Snyder
,
A. J.
, and
Pierce
,
W. S.
, 1986, “
Roller Screw Electric Motor Ventricular Assist Device
,”
Trans. Am. Soc. Artif. Intern. Organs
,
32
(
1
), pp.
46
48
.
4.
Rosenberg
,
G.
,
Snyder
,
A.
,
Weiss
,
W.
,
Landis
,
D.
,
Geselowitz
,
D.
, and
Pierce
,
W.
, 1982, “
A Roller Screw Drive for Implantable Blood Pumps
,”
Trans. Am. Soc. Artif. Intern. Organs
,
28
, pp.
123
126
.
5.
Gromov
,
V. V.
,
Misckevich
,
A. V.
,
Yudkin
,
E. N.
,
Kochan
,
H.
,
Coste
,
P.
, and
Re
,
E.
, 1997, “
The Mobile Penetrometer, A Mole for Sub-Surface Soil Investigation
,”
Proceedings of the 7th European Space Mechanisms and Tribology Symposium
, Noordwijk, The Netherlands, pp.
151
156
.
6.
Wander
,
J.
,
Byrd
,
V.
, and
Parker
,
J.
, 1995, “
Initial Disturbance Accommodating Control System Analysis for Prototype Electromechanical Space Shuttle Steering Actuator
,”
Proceedings of the American Control Conference
, Seattle, WA, Vol.
6
, pp.
3961
3964
.
7.
Marks
,
S.
,
Cortopassi
,
C.
,
DeVries
,
J.
,
Hoyer
,
E.
,
Leinbach
,
R.
,
Minamihara
,
Y.
,
Padmore
,
H.
,
Pipersky
,
P.
,
Plate
,
D.
,
Schlueter
,
R.
, and
Young
,
A.
, 1997, “
The Advanced Light Source Elliptically Polarizing Undulator
,”
Proceedings of the Particle Accelerator Conference
, Vancouver, BC, Canada, Vol.
3
, pp.
3221
3223
.
8.
Brandenburg
,
G.
,
Brückl
,
S.
,
Dormann
,
J.
,
Heinzl
,
J.
, and
Schmidt
,
C.
, 2000, “
Comparative Investigation of Rotary and Linear Motor Feed Drivesystems for High Precision Machine Tools
,”
Proceedings of the 6th International Workshop on Advanced Motion Control
, Nagoya, Japan, pp.
384
389
.
9.
Dupont
,
P. E.
, 1990, “
Friction Modeling in Dynamic Robot Simulation
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, Cincinnati, OH, Vol.
2
, pp.
1370
1376
.
10.
Lemor
,
P. C.
, 1996, “
The Roller Screw, An Efficient and Reliable Mechanical Component of Electro-Mechanical Actuators
,”
Proceedings of the 31st Intersociety Energy Conversion Engineering Conference, IECEC
, Washington, DC, Aug. 11–16, Vol.
1
, pp.
215
220
.
11.
Schinstock
,
D. E.
, and
Haskew
,
T. A.
, 1996, “
Dynamic Load Testing of Roller Screw EMAs
,”
Proceedings of the 31st Intersociety Energy Conversion Engineering Conference
,
IECEC
, Washington, DC, Aug. 11–16, Vol.
1
, pp.
221
226
.
12.
Hojjat
,
Y.
, and
Agheli
,
M. M.
, 2009, “
A Comprehensive Study on Capabilities and Limitations of Roller–Screw With Emphasis on Slip Tendency
,”
Mech. Mach. Theory
,
44
(10), pp.
1887
1899
.
13.
Tselishchev
,
A. S.
, and
Zharov
,
I. S.
, 2008, “
Elastic Elements in Roller-Screw Mechanisms
,”
Russ. Eng. Res.
,
28
(
11
), pp.
1040
1043
.
14.
Sokolov
,
P. A.
,
Blinov
,
D. S.
,
Ryakhovskii
,
O. A.
,
Ochkasov
,
E. E.
, and
Drobizheva
,
A. Y.
, 2008, “
Promising Rotation-Translation Converters
,”
Russ. Eng. Res.
,
28
(
10
), pp.
949
956
.
15.
Falkner
,
M.
,
Nitschko
,
T.
,
Supper
,
L.
,
Traxler
,
G.
,
Zemann
,
J. V.
, and
Roberts
,
E. W.
, 2003, “
Roller Screw Lifetime Under Oscillatory Motion: From Dry to Liquid Lubrication
,”
Proceedings of the 10th European Space Mechanisms and Tribology Symposium
, pp.
297
301
.
16.
Jiajun
,
Y.
,
Zhenxing
,
W.
,
Jisheng
,
Z.
, and
Wei
,
D.
, 2011, “
Calculation of Load Distribution of Planetary Roller Screw and Static Rigidity
,”
J. Huazhong Univ. Sci. Technol. (Natural Science Edition)
,
39
(
4
), pp.
1
4
.
17.
Velinsky
,
S. A.
,
Lasky
,
T. A.
, and
Chu
,
B.
, 2009, “
Kinematics and Efficiency Analysis of the Planetary Roller Screw Mechanism
,”
ASME J. Mech. Des.
,
131
, p.
011016
.
18.
Sokolov
,
P. A.
,
Ryakhovskii
,
O. A.
,
Blinov
,
D. S.
, and
Laptev
,
A.
, 2005, “
Kinematics of Planetary Roller–Screw Mechanisms
,”
Vestn. MGTU, Mashinostr.
,
2005
(
1
), pp.
3
14
.
19.
Ryakhovskii
,
O. A.
,
Blinov
,
D. S.
, and
Sokolov
,
P. A.
, 2002, “
Analysis of the Operation of a Planetary Roller–Screw Mechanism
,”
Vestn. MGTU, Mashinostr.
,
2002
(
4
), pp.
52
57
.
20.
SKF, “
Roller Screws
,” SKF Group, accessed January 5, 2011, http://www.skf.com/files/779280.pdf
You do not currently have access to this content.