Although Genetic Algorithms (GAs) and Multi-Objective Genetic Algorithms (MOGAs) have been widely used in engineering design optimization, the important challenge still faced by researchers in using these methods is their high computational cost due to the population-based nature of these methods. For these problems it is important to devise MOGAs that can significantly reduce the number of simulation calls compared to a conventional MOGA. An improved kriging-assisted MOGA, called Circled Kriging MOGA (CK-MOGA), is presented in this paper, in which kriging metamodels are embedded within the computation procedure of a traditional MOGA. In the proposed approach, the decision as to whether the original simulation or its kriging metamodel should be used for evaluating an individual is based on a new and advanced objective switch criterion and an adaptive metamodeling technique. The effect of the possible estimated error from the metamodel is mitigated by applying the new switch criterion. Five numerical and engineering examples with different degrees of difficulty are used to illustrate applicability of the proposed approach, with the verification using different quality measures. The results show that, on the average, CK-MOGA outperforms both a conventional MOGA and a previously developed Kriging MOGA in terms of the number of simulation calls.

References

1.
Deb
,
K.
, 2001,
Multiobjective Optimization Using Evolutionary Algorithms
,
Wiley
,
New York, NY
.
2.
Farina
,
M.
, 2001, “
A Minimal Cost Hybrid Strategy for Pareto Optimal Front Approximation
,”
Evol. Optim.
,
3
(
1
), pp.
41
52
(available online at www.jeo.org).
3.
Farina
,
M.
, 2002, “
A Neural Network Based Generalized Response Surface Multiobjective Evolutionary Algorithms
,” Proceedings of Congress on Evolutionary Computation, IEEE Press, pp.
956
961
.
4.
Lian
,
Y.
, and
Liou
,
M.
, 2005, “
Multiobjective Optimization Using Coupled Response Surface Model and Evolutionary Algorithm
,”
AIAA J.
,
43
(
6
), pp.
1316
1325
.
5.
Sacks
,
J.
,
Welch
,
W. J.
,
Mitchell
,
T. J.
, and
Wynn
,
H. P.
, 1989, “
Design and Analysis of Computer Experiments
,”
Stat. Sci.
,
4
(
4
), pp.
409
435
.
6.
Fang
,
H.
,
Rais-Rohani
,
M.
,
Liu
,
Z.
, and
Horstemeyer
,
M. F.
, 2005, “
A Comparative Study of Metamodeling Methods for Multi-Objective Crashworthiness Optimization
,”
Comput. Struct.
,
83
, pp.
2121
2136
.
7.
Jin
,
Y.
, 2005, “
A Comprehensive Survey of Fitness Approximation in Evolutionary Computation
,”
Soft Comput.
,
9
(
1
), pp.
3
12
.
8.
Smith
,
R.
,
Dike
,
B.
, and
Stegmann
,
S.
, 1995, “
Fitness Inheritance in Genetic Algorithms
,” Proceedings of the ACM Symposiums on Applied Computing, ACM, pp.
345
350
.
9.
Chen
,
J.-H.
,
Goldberg
,
D. E.
,
Ho
,
S.-Y.
, and
Sastry
,
K.
, 2002, “
Fitness Inheritance in Multi-objective Optimization
,”
Proceedings of the Genetic and Evolutionary Computation Conference
,
Morgan Kaufmann
,
New York
.
10.
Rasheed
,
K.
,
Ni
,
X.
, and
Vattam
,
S.
, 2005, “
Comparison of Methods for Developing Dynamic Reduced Models for Design Optimization
,”
Soft Comput.
,
9
, pp.
29
37
.
11.
Shan
,
S.
, and
Wang
,
G. G.
, 2005, “
An Efficient Pareto Set Identification Approach for Multiobjective Optimization on Black-box Functions
,”
J. Mech. Des.
,
127
(
5
), pp.
866
874
.
12.
Li
,
G.
,
Li
,
M.
,
Azarm
,
S.
,
Rambo
,
J.
, and
Joshi
,
Y.
, 2007, “
Optimizing Thermal Design of Data Center Cabinets With a New Multi-Objective Genetic Algorithm
,”
Distrib. Parallel Database.
,
21
(
2–3
), pp.
167
192
.
13.
Li
,
G.
,
Li
,
M.
,
Azarm
,
S.
,
Al Qasas
,
N.
,
Al Ameri
,
T.
, and
Al Hashimi
,
S.
, 2009, “
Improving Multi-Objective Genetic Algorithms With Adaptive Design of Experiments and Online Metamodeling
,”
Struct. Multidiscip. Optim.
,
37
(
5
), pp.
447
461
.
14.
Simpson
,
T. W.
,
Peplinski
,
J.
,
Koch
,
P. N.
, and
Allen
,
J. K.
, 2001, “
Metamodels for Computer-Based Engineering Design: Survey and Recommendations
,”
Eng. Comput.
,
17
(
2
), pp.
129
150
.
15.
Simpson
,
T. W.
,
Booker
,
A. J.
,
Ghosh
,
D.
,
Giunta
,
A. A.
,
Koch
,
P. N.
and
Yang
,
R.-J.
, 2004, “
Approximation Methods in Multidisciplinary Analysis and Optimization: A Panel Discussion
,”
Struct. Multidiscip. Optim.
,
27
, pp.
302
313
.
16.
Wang
,
G. G.
, and
Shan
,
S.
, 2007, “
Review of Metamodeling Techniques in Support of Engineering Design Optimization
,”
J. Mech. Des.
,
129
(
4
), pp.
370
380
.
17.
Papadrakakis
,
M.
,
Lagaros
,
N.
, and
Tsompanakis
,
Y.
, 1999, “
Optimization of Large-Scale 3D Trusses Using Evolution Strategies and Neural Networks
,”
Int. J. Space Struct.
,
14
(
3
), pp.
211
223
.
18.
Wilson
,
B.
,
Cappelleri
,
D.
,
Frecker
,
M.
, and
Simpson
,
T. W.
, 2001, “
Efficient Pareto Frontier Exploration Using Surrogate Approximations
,”
Optim. Eng.
,
2
, pp.
31
50
.
19.
Simpson
,
T. W.
,
Mauery
,
T. M.
,
Korte
,
J. J.
, and
Mistree
,
F.
, 2001, “
Kriging Models for Global Approximation in Simulation-Based Multidisciplinary Design Optimization
,”
AIAA J.
,
39
(
12
), pp.
2233
2241
.
20.
Chung
,
H.
, and
Alonso
,
J.
, 2004, “
Multiobjective Optimization Using Approximation Model-Based Genetic Algorithms
,”
Proceedings of the 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference
, Aug. 30–Sep.1,
Albany
,
New York
, AIAA-2004-432.
21.
Nair
,
P. B.
, and
Keane
,
A. J.
, 1998, “
Combining Approximation Concepts With Genetic Algorithm-Based Structural Optimization Procedures
,” AIAA-1998-1912, AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit, 39th, and AIAA/ASME/AHS Adaptive Structures Forum, Apr. 20–23, Long Beach, CA, Collection of Technical Dissertations. Pt. 2 (A98-25092 06-39).
22.
Jin
,
Y.
,
Olhofer
,
M.
, and
Sendhoff
,
B.
, 2001, “
Managing Approximate Models in Evolutionary Aerodynamic Design Optimization
,”
Proc. IEEE Cong. Evol. Comput.
,
1
, pp.
592
599
.
23.
Jin
,
Y.
,
Olhofer
,
M.
, and
Sendhoff
,
B.
, 2002, “
A Framework for Evolutionary Optimization with Approximate Fitness Functions
,”
IEEE Trans. Evol. Comput.
,
6
(
5
), pp.
48
494
.
24.
Nain
,
P. K. S.
, and
Deb
,
K.
, 2003, “
Computationally Effective Search and Optimization Procedure Using Coarse to Fine Approximations
,” Proceedings of the Congress on Evolutionary Computation (CEC-2003)x, Canberra, Australia, pp.
2081
2088
.
25.
Li
,
M.
,
Li
,
G.
, and
Azarm
,
S.
, 2008, “
A Kriging Metamodel Assisted Multi-objective Genetic Algorithm for Design Optimization
,”
J. Mech. Des.
,
130
(
3
), p.
031401
.
26.
Miettinen
,
K. M.
, 1999,
Nonlinear Multiobjective Optimization
,
Kluwer Academic Publishers
,
Boston, USA
.
27.
Kleijnen
J. P. C.
, 2009, “
Kriging Metamodeling in Simulation: A review
,”
Eur. J. Oper. Res.
,
192
(
3
), pp.
707
716
.
28.
Albada
,
S. J.
, and
Robinson
,
P. A.
, 2007, “
Transformation of Arbitrary Distributions to the Normal Distribution With Application to EEG Test–Retest Reliability
,”
J. Neurosci. Methods
,
161
(
2
), pp.
205
211
.
29.
Wu
,
J.
, and
S.
Azarm
, 2001, “
Metrics for Quality Assessment of a Multiobjective Design Optimization Solution Set
,”
J. Mech. Des.
,
123
(
1
), pp.
18
25
.
30.
Shewry
,
M. C.
, and
Wynn
,
H. P.
, 1987, “
Maximum Entropy Sampling
,”
J. Appl. Stat.
,
14
, pp.
165
170
.
31.
Narayanan
,
S.
and
Azarm
,
S.
, 1999, “
On Improving Multiobjective Genetic Algorithms for Design Optimization
,”
Struct. Multidiscip. Optim.
,
18
, pp.
146
155
.
32.
Kurapati
,
A.
,
Azarm
,
S.
, and
Wu
,
J.
, 2002, “
Constraint Handling Improvements for Multi-Objective Genetic Algorithms
,”
Struct. Multidiscip. Optim.
,
23
(
3
), pp.
204
213
.
You do not currently have access to this content.