In this paper, we study the type synthesis of wire flexures to achieve orthogonal motions by using a recently developed screw theory based design approach. For a given desired mobility pattern, our goal is to find a system of wire flexures that are simply connected in parallel between the functional stage and the ground. It has been shown that a wire flexure is essentially a pure force or a line screw. An n degree-of-freedom (DOF) motion space (allowable motion) is realizable if its reciprocal constraint space can be spanned by 6-n line screws or forces. We first enumerate 34 possible 1–5DOF spaces that are formed by motions along the coordinate axes attached on the functional stage. For each of these 34 motion spaces, we apply the screw theory approach to find its reciprocal force space as well as its rank. At last, a typical design is provided for each of these motion spaces.

1.
Howell
,
L. L.
, 2001,
Compliant Mechanisms
,
Wiley-Interscience
,
New York
.
2.
Jacobsen
,
J. O.
,
Winder
,
B. G.
,
Howell
,
L. L.
, and
Magleby
,
S. P.
, 2010, “
Lamina Emergent Mechanisms and Their Basic Elements
,”
ASME J. Mech. Rob.
1942-4302,
2
(
1
), p.
011003
.
3.
Howell
,
L. L.
,
DiBiasio
,
C. M.
,
Cullinan
,
M. A.
,
Panas
,
R. M.
, and
Culpepper
,
M. L.
, 2010, “
A Pseudo-Rigid-Body Model for Large Deflections of Fixed-Clamped Carbon Nanotubes
,”
ASME J. Mech. Rob.
1942-4302,
2
(
3
), p.
034501
.
4.
Cappelleri
,
D. J.
,
Krishnan
,
G.
,
Kim
,
C.
,
Kumar
,
V.
, and
Kota
,
S.
, 2010, “
Toward the Design of a Decoupled, Two-Dimensional, Vision-Based MU N Force Sensor
,”
ASME J. Mech. Rob.
1942-4302,
2
(
2
), p.
021010
.
5.
Smith
,
S. T.
, 2000,
Flexure: Element of Elastic Mechanisms
,
CRC
,
Boca Raton, FL
.
6.
Smith
,
S. T.
,
Chetwynd
,
D. G.
, and
Chetwynd
,
D. J.
, 1992,
Foundations of Ultra-Precision Mechanism Design
,
Taylor & Francis
,
London
.
7.
Xu
,
P.
,
Jingjun
,
Y.
,
Guanghua
,
Z.
, and
Shusheng
,
B.
, 2008, “
The Stiffness Model of Leaf-Type Isosceles-Trapezoidal Flexural Pivots
,”
ASME J. Mech. Des.
0161-8458,
130
(
8
), p.
082303
.
8.
Blanding
,
D. L.
, 1999,
Exact Constraint: Machine Design Using Kinematic Processing
,
ASME
,
New York
.
9.
Hale
,
L. C.
, 1999. “
Principles and Techniques for Designing Precision Machines
,” Ph.D. thesis, MIT, Cambridge, MA.
10.
Awtar
,
S.
, and
Slocum
,
A. H.
, 2007, “
Constraint-Based Design of Parallel Kinematic XY Flexure Mechanisms
,”
ASME J. Mech. Des.
0161-8458,
129
(
8
), pp.
816
830
.
11.
Hopkins
,
J. B.
, and
Culpepper
,
M. L.
, 2010, “
Synthesis of Multi-Degree of Freedom, Parallel Flexure System Concepts via Freedom and Constraint Topology (FACT)-Part I: Principles
,”
Precis. Eng.
0141-6359,
34
(
2
), pp.
259
270
.
12.
Hopkins
,
J. B.
, and
Culpepper
,
M. L.
, 2010, “
Synthesis of Multi-Degree of Freedom, Parallel Flexure System Concepts via Freedom and Constraint Topology (FACT). Part II: Practice
,”
Precis. Eng.
0141-6359,
34
(
2
), pp.
271
278
.
13.
Hunt
,
K. H.
, 1978,
Kinematic Geometry of Mechanisms
,
Oxford University Press
,
New York
.
14.
Phillips
,
J.
, 1984,
Freedom in Machinery: Introducing Screw Theory
, Vol.
1
,
Cambridge University Press
,
Cambridge, UK
.
15.
Phillips
,
J.
, 1990,
Freedom in Machinery: Screw Theory Exemplified
, Vol.
2
,
Cambridge University Press
,
Cambridge, UK
.
16.
Lipkin
,
H.
, and
Duffy
,
J.
, 1985, “
The Elliptic Polarity of Screws
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
107
(
3
), pp.
377
386
.
17.
Davidson
,
J. K.
, and
Hunt
,
K. H.
, 2004,
Robots and Screw Theory: Applications of Kinematics and Statics to Robotics
,
Oxford University Press
,
New York
.
18.
Dai
,
J. S.
, and
Jones
,
J. R.
, 2001, “
Interrelationship Between Screw Systems and Corresponding Reciprocal Systems and Applications
,”
Mech. Mach. Theory
0094-114X,
36
(
5
), pp.
633
651
.
19.
Huang
,
S.
, and
Schimmels
,
J. M.
, 1998, “
The Bounds and Realization of Spatial Stiffnesses Achieved With Simple Springs Connected in Parallel
,”
IEEE Trans. Robot. Autom.
,
14
(
3
), pp.
466
475
.
20.
Huang
,
S.
, 1998, “
The Analysis and Synthesis of Spatial Compliance
,” Ph.D. thesis, Marquette University, Milwaukee, WI.
21.
Su
,
H. -J.
,
Dorozhkin
,
D. V.
, and
Vance
,
J. M.
, 2009, “
A Screw Theory Approach for the Conceptual Design of Flexible Joints for Compliant Mechanisms
,”
ASME J. Mech. Rob.
1942-4302,
1
(
4
), p.
041009.1
.
22.
Su
,
H. -J.
, and
Tari
,
H.
, 2010, “
On Line Screw Systems and Their Application to Flexure Synthesis
,”
ASME
Paper No. DETC2010-28361.
23.
Dai
,
J. S.
, and
Jones
,
J. R.
, 2003, “
A Linear Algebraic Procedure in Obtaining Reciprocal Screw Systems
,”
J. Rob. Syst.
0741-2223,
20
(
7
), pp.
401
412
.
You do not currently have access to this content.