A three-dimensional wide curve is a spatial curve with variable cross sections. This paper introduces a geometric optimization method for spatial compliant mechanisms by using three-dimensional wide curves. In this paper, every material connection in a spatial compliant mechanism is represented by a three-dimensional wide curve and the whole spatial compliant mechanism is modeled as a set of connected three-dimensional wide curves. The geometric optimization of a spatial compliant mechanism is considered as the generation and optimal selection of the control parameters of the corresponding three-dimensional parametric wide curves. The deformation and performance of spatial compliant mechanisms are evaluated by the isoparametric degenerate-continuum nonlinear finite element procedure. The problem-dependent objectives are optimized and the practical constraints are imposed during the optimization process. The optimization problem is solved by the MATLAB constrained nonlinear programming algorithm.

1.
Midha
,
A.
,
Norton
,
T. W.
, and
Howell
,
L. L.
, 1994, “
On the Nomenclature, Classification, and Abstractions of Compliant Mechanisms
,”
ASME J. Mech. Des.
0161-8458,
116
(
1
), pp.
270
279
.
2.
Ananthasuresh
,
G. K.
, and
Kota
,
S.
, 1995, “
Designing Compliant Mechanisms
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
,
117
(
11
), pp.
93
96
. 0025-6501
3.
Howell
,
L. L.
, 2001,
Compliant Mechanisms
,
Wiley
,
New York
.
4.
Kota
,
S.
,
Ananthasuresh
,
G. K.
,
Crary
,
S. B.
, and
Wise
,
K. D.
, 1994, “
Design and Fabrication of Microelectromechanical Systems
,”
ASME J. Mech. Des.
0161-8458,
116
(
4
), pp.
1081
1088
.
5.
Ananthasuresh
,
G. K.
, 2003,
Optimal Synthesis Methods for MEMS
,
Kluwer Academic
,
Boston, MA
.
6.
Bendsøe
,
M. P.
, and
Sigmund
,
O.
, 2002,
Topology Optimization
,
Springer
,
New York
.
7.
Hetrick
,
J. A.
, and
Kota
,
S.
, 1999, “
An Energy Formulation for Parametric Size and Shape Optimization of Compliant Mechanisms
,”
ASME J. Mech. Des.
0161-8458,
121
(
2
), pp.
229
234
.
8.
Xu
,
D.
, and
Ananthasuresh
,
G. K.
, 2003, “
Freeform Skeletal Shape Optimization of Compliant Mechanisms
,”
ASME J. Mech. Des.
0161-8458,
125
(
2
), pp.
253
261
.
9.
Zhou
,
H.
, and
Ting
,
K. L.
, 2006, “
Shape and Size Synthesis of Compliant Mechanisms Using Wide Curve Theory
,”
ASME J. Mech. Des.
0161-8458,
128
(
3
), pp.
551
558
.
10.
Lan
,
C. C.
, and
Cheng
,
Y. J.
, 2008, “
Distributed Shape Optimization of Compliant Mechanisms Using Intrinsic Functions
,”
ASME J. Mech. Des.
0161-8458,
130
(
7
), p.
072304
.
11.
Salomon
,
D.
, 1999,
Computer Graphics and Geometric Modeling
,
Springer
,
New York
.
12.
Farin
,
G.
, 2001,
Curves and Surfaces for CAGD: A Practical Guide
,
Academic
,
New York
.
13.
Mestetskii
,
L. M.
, 2000, “
Fat Curves and Representation of Planar Figures
,”
Comput. Graph.
0097-8930,
24
(
1
), pp.
9
21
.
14.
2006, “
Optimization Toolbox for Use With MATLAB
,” User’s Guide, Version 3, MathWorks, Inc.
15.
Weisstein
,
E. W.
, 2002, “
Plane-Plane Intersection
,” MathWorld—A Wolfram Web Resource.
16.
Crisfield
,
M. A.
, 1997,
Non-Linear Finite Element Analysis of Solids and Structures
,
Wiley
,
New York
.
17.
Belytschko
,
T.
,
Liu
,
W. K.
, and
Moran
,
B.
, 2003,
Nonlinear Finite Elements for Continua and Structures
,
Wiley
,
New York
.
You do not currently have access to this content.