In this paper, we investigate power flow in compliant mechanisms that are employed in dynamic applications. More specifically, we identify various elements of the energy storage and transfer between the input, external load, and strain energy stored within the compliant transmission. The goal is to design compliant mechanisms for dynamic applications by exploiting the inherent energy storage capability of compliant mechanisms in the most effective manner. We present a detailed case study on a flapping mechanism, in which we compare the peak input power requirement in a rigid-body mechanism with attached springs versus a distributed compliant mechanism. Through this case study, we present two approaches: (1) generative-load exploitation and (2) reactance cancellation, to describe the role of stored elastic energy in reducing the peak input power requirement. We propose a compliant flapping mechanism and its evaluation using nonlinear transient analysis. The input power needed to drive the proposed compliant flapping mechanism is found to be 50% less than a rigid-link four-bar flapping mechanism without a spring, and 15% less than the one with a spring. This reduction of peak input power is primarily due to the exploitation of elasticity in compliant members. The results show that a compliant mechanism can be a better alternative to a rigid-body mechanism with attached springs.

1.
Khatait
,
J. P.
,
Mukherjee
,
S.
, and
Seth
,
B.
, 2006, “
Compliant Design for Flapping Mechanism: A Minimum Torque Approach
,”
Mech. Mach. Theory
0094-114X,
41
(
1
), pp.
3
16
.
2.
Madangopal
,
R.
,
Khan
,
Z. A.
, and
Agrawal
,
S. K.
, 2005, “
Biologically Inspired Design of Small Flapping Wing Air Vehicles Using Four-Bar Mechanisms and Quasi-Steady Aerodynamics
,”
ASME J. Mech. Des.
1050-0472,
127
(
4
), pp.
809
816
.
3.
Krouse
,
J. K.
, 1980, “
Compliant Mechanisms—A New Class of Mechanical Devices
,”
Mach. Des.
0024-9114,
52
(
2
), pp.
86
90
.
4.
Thompson
,
L. H.
, 1983, “
Compliant Positioning Mechanism
,”
IBM Tech. Discl. Bull.
,
25
(
11A
), pp.
5444
5445
.
5.
Parkin
,
R. E.
, and
Hutchinson
,
W. K.
, 1985, “
Compliant Mechanical Gripper
,”
Robotics Age
,
7
(
5
), pp.
11
13
.
6.
Andeen
,
G. B.
, and
Kombluh
,
R.
, 1988, “
Design of Compliance in Robotics
,”
Proceedings of the 1988 IEEE International Conference on Robotics and Automation
,
IEEE
, New York, pp.
276
281
.
7.
Holl
,
J.
,
Koffler
,
W.
, and
Midha
,
A.
, 1983, “
Compliant Mechanism Synthesis in Prosthetic Design
,”
AMD Symposia Series
,
ASME
, New York, Vol.
56
, pp.
63
66
.
8.
Trease
,
B. P.
,
Moon
,
Y.
, and
Kota
,
S.
, 2005, “
Design of Large-Displacement Compliant Joints
,”
ASME J. Mech. Des.
1050-0472,
127
(
4
), pp.
788
798
.
9.
Howell
,
L. L.
,
Rao
,
S. S.
, and
Midha
,
A.
, 1994, “
Reliability-Based Optimal Design of a Bistable Compliant Mechanism
,”
ASME J. Mech. Des.
1050-0472,
116
(
4
), pp.
1115
1121
.
10.
Larsen
,
U. D.
,
Sigmund
,
O.
, and
Bouwstra
,
S.
, 1997, “
Design and Fabrication of Compliant Micromechanisms and Structures With Negative Poisson’s Ratio
,”
J. Microelectromech. Syst.
1057-7157,
6
(
2
), pp.
99
106
.
11.
Kikuchi
,
N.
,
Nishiwaki
,
S.
,
Ono Fonseca
,
J. S.
, and
Nelli Silva
,
E. C.
, 1998, “
Design Optimization Method for Compliant Mechanisms and Material Microstructure
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
151
(
3-4
), pp.
401
417
.
12.
Calin
,
M.
,
Chaillet
,
N.
,
Bourjault
,
A.
,
Bertsch
,
A.
, and
Zissy
,
S.
, 1996, “
Design and Control of Compliant Microrobots
,”
IEEE Symposium on Emerging Technologies and Factory Automation, ETFA
,
IEEE
, Piscataway, NJ, Vol.
2
, pp.
489
492
.
13.
Kota
,
S.
,
Ananthasuresh
,
G. K.
,
Crary
,
S. B.
, and
Wise
,
K. D.
, 1994, “
Design and Fabrication of Microelectromechanical Systems
,”
ASME J. Mech. Des.
1050-0472,
116
(
4
), pp.
1081
1088
.
14.
Su
,
X. S.
, and
Yang
,
H. S.
, 2001, “
Design of Compliant Microleverage Mechanisms
,”
Sens. Actuators, A
0924-4247,
87
(
3
), pp.
146
156
.
15.
Lu
,
K.
, and
Kota
,
S.
, 2003, “
Design of Compliant Mechanisms for Morphing Structural Shapes
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
14
(
6
), pp.
379
391
.
16.
Kota
,
S.
,
Lu
,
K.
,
Kreiner
,
Z.
,
Trease
,
B.
,
Areanas
,
J.
, and
Geiger
,
J.
, 2005, “
Design and Application of Compliant Mechanisms for Surgical Tools
,”
J. Biomech. Eng.
0148-0731,
127
(
6
), pp.
981
989
.
17.
Osborn
,
R. F.
,
Kota
,
S.
,
Hetrick
,
J. A.
,
Geister
,
D. E.
,
Tilmann
,
C. P.
, and
Joo
,
J.
, 2004, “
Active Flow Control Using High-Frequency Compliant Structures
,”
J. Aircr.
0021-8669,
41
(
3
), pp.
603
609
.
18.
Tantanawat
,
T.
,
Li
,
Z.
, and
Kota
,
S.
, 2004, “
Application of Compliant Mechanisms to Active Vibration Isolation Systems
,”
Proceedings of the ASME Design Engineering Technical Conference
,
ASME
, New York, Vol.
2B
, pp.
1165
1172
.
19.
Du
,
H.
,
Lau
,
G. K.
,
Lim
,
M. K.
, and
Qui
,
J.
, 2000, “
Topological Optimization of Mechanical Amplifiers for Piezoelectric Actuators Under Dynamic Motion
,”
Smart Mater. Struct.
0964-1726,
9
(
6
), pp.
788
800
.
20.
Nishiwaki
,
S.
,
Saitou
,
K.
,
Min
,
S.
, and
Kikuchi
,
N.
, 2000, “
Topological Design Considering Flexibility Under Periodic Loads
,”
Struct. Multidiscip. Optim.
1615-147X,
19
(
1
), pp.
4
16
.
21.
Maddisetty
,
H.
, and
Frecker
,
M.
, 2004, “
Dynamic Topology Optimization of Compliant Mechanisms and Piezoceramic Actuators
,”
ASME J. Mech. Des.
1050-0472,
126
(
6
), pp.
975
983
.
22.
Li
,
Z.
, and
Kota
,
S.
, 2002, “
Dynamic Analysis of Compliant Mechanisms
,”
Proceedings of the ASME Design Engineering Technical Conference
,
ASME
, New York, Vol.
5A
, pp.
43
50
.
23.
Lai
,
E.
, and
Anathasuresh
,
G. K.
, 2002, “
On the Design of Bars and Beams for Desired Mode Shapes
,”
J. Sound Vib.
0022-460X,
254
(
2
), pp.
393
406
.
24.
Boyle
,
C.
,
Howell
,
L. L.
,
Magleby
,
S. P.
, and
Evans
,
M. S.
, 2003, “
Dynamic Modeling of Compliant Constant-Force Compression Mechanisms
,”
Mech. Mach. Theory
0094-114X,
38
(
12
), pp.
1469
1487
.
25.
Handley
,
D. C.
,
Lu
,
T.
,
Yong
,
Y. K.
, and
Zhang
,
W. J.
, 2004, “
A Simple and Efficient Dynamic Modeling Method for Compliant Micropositioning Mechanisms Using Flexure Hinges
,”
Proc. SPIE
0277-786X, Vol.
5276
, pp.
67
76
.
26.
Yu
,
Y.
,
Howell
,
L. L.
,
Lusk
,
C.
,
Yue
,
Y.
, and
He
,
M.
, 2005, “
Dynamic Modeling of Compliant Mechanisms Based on the Pseudo-Rigid-Body Model
,”
ASME J. Mech. Des.
1050-0472,
127
(
4
), pp.
760
765
.
27.
Kota
,
S.
,
Hetrick
,
J.
,
Li
,
Z.
, and
Saggere
,
L.
, 1999, “
Tailoring Unconventional Actuators Using Compliant Transmissions: Design Methods and Applications
,”
IEEE/ASME Trans. Mechatron.
1083-4435,
4
(
4
), pp.
396
408
.
28.
Kota
,
S.
,
Hetrick
,
J.
,
Rodgers
,
S.
, and
Li
,
Z.
, 2001, “
Compliant Displacement Amplification Apparatus for Micro Electro Mechanical Systems
,” U.S. Patent No. 6,175,170.
29.
Hetrick
,
J.
, and
Kota
,
S.
, 2003, “
Displacement Amplification Structure and Device
, U.S. Patent No. 6,557,436.
You do not currently have access to this content.