Initially curved frame elements are used in this paper within an optimization-based framework for the systematic synthesis of compliant mechanisms (CMs) that can trace nonlinear paths. These elements exhibit a significantly wider range of mechanical responses to applied loads than the initially straight frame elements, which have been widely used in the past for the synthesis of CMs. As a consequence, fewer elements are required in the design discretization to obtain a CM with a desired mechanical response. The initial slopes at the two nodes of each element are treated as design variables that influence not only the shape of the members in a CM, but also the mechanical response of the latter. Building on our prior work, the proposed synthesis approach uses genetic algorithms with both binary (i.e., 0/1) and continuous design variables in conjunction with a co-rotational total Lagrangian finite element formulation and a Fourier shape descriptors-based objective function. This objective function is chosen for its ability to provide a robust comparison between the actual path traced by a candidate CM design and the desired path. Two synthesis examples are presented to demonstrate the synthesis procedure. The resulting designs are fabricated as is, without any postprocessing, and tested. The fabricated prototypes show good agreement with the design intent.

1.
Kota
,
S.
, and
Ananthasuresh
,
G. K.
, 1995, “
Designing Compliant Mechanisms
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501,
117
(
11
), pp.
93
96
.
2.
Howell
,
L. L.
, 2001,
Compliant Mechanisms
,
John-Wiley and Sons, Inc.
, New York.
3.
Howell
,
L. L.
, and
Midha
,
A.
, 1996, “
A Loop-Closure Theory for the Analysis and Synthesis of Compliant Mechanisms
,”
ASME J. Mech. Des.
1050-0472,
118
,
121
125
.
4.
Frecker
,
M.
,
Ananthasuresh
,
G. K.
,
Nishiwaki
,
N.
,
Kikuchi
,
N.
, and
Kota
,
S.
, 1997, “
Topological Synthesis of Compliant Mechanisms Using Multi-criteria Optimization
,”
ASME J. Mech. Des.
1050-0472,
119
, pp.
238
245
.
5.
Sigmund
,
O.
, 1997, “
On the Design of Compliant Mechanisms Using Topology Optimization
,”
Mech. Struct. Mach.
0890-5452
25
, pp.
495
526
.
6.
Saxena
,
A.
, and
Ananthasuresh
,
G. K.
, 2000, “
On an Optimality Property of Compliant Topologies
,”
Struct. Multidiscip. Optim.
1615-147X,
19
,
36
49
.
7.
Larsen
,
V. D.
,
Sigmund
,
O.
, and
Bouwstra
,
S.
, 1996, “
Design and Fabrication of Compliant Mechanisms and Structures With Negative Poisson’s Ratio
,”
Workshop on Micro Electro Mechanical Systems
, MEMS-96, IEEE, New York.
8.
Hetrick
,
J. A.
, and
Kota
,
S.
, 1999, “
An Energy Formulation for Parametric Size and Shape Optimization of Compliant Mechanisms
,”
ASME J. Mech. Des.
1050-0472,
121
(
2
), pp.
229
234
.
9.
Bruns
,
T. E.
, and
Tortorelli
,
D. A.
, 2001, “
Topology Optimization of Nonlinear Elastic Structures and Compliant Mechanisms
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
190
(
26–27
), pp.
3443
3459
.
10.
Saxena
,
A.
, and
Ananthasuresh
,
G. K.
, 2001, “
Topology Synthesis of Compliant Mechanisms for Nonlinear Force-deflection and Curved Output Path
,”
ASME J. Mech. Des.
1050-0472,
123
, pp.
33
42
.
11.
Pedersen
,
C. B. W.
,
Buhl
,
T.
, and
Sigmund
,
O.
, 2001, “
Topology Synthesis of Large-Displacement Compliant Mechanisms
,”
Int. J. Numer. Methods Eng.
0029-5981,
50
(
12
), pp.
2683
2706
.
12.
Ullah
,
I.
, and
Kota
,
S.
, 1997, “
Optimal Synthesis of Mechanisms for Path Generation Using Fourier Descriptors and Global Search Methods
,”
ASME J. Mech. Des.
1050-0472,
119
, pp.
504
510
.
13.
Lu
,
K.-J.
, and
Kota
,
S.
, 2003, “
Design of Compliant Mechanisms for Morphing Structural Shapes
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
14
(
6
), pp.
379
391
.
14.
Mankame
,
N. D.
, and
Ananthasuresh
,
G. K.
, 2007, “
Synthesis of Contact-Aided Compliant Mechanisms for Non-Smooth Path Generation
,”
Int. J. Numer. Methods Eng.
0029-5981,
69
, pp.
2564
2605
.
15.
Bendsøe
,
M. P.
, 1995,
Optimization of Structural Topology, Shape and Material
,
Springer
, Berlin.
16.
Zhou
,
M.
, and
Rozvany
,
G. I. N.
, 1991, “
The COC Algorithm, Part II: Topological, Geometrical, and Generalized Shape Optimization
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
89
,
309
336
.
17.
Borrvall
,
T.
, and
Petersson
,
J.
, 2001, “
Topology Optimization Using Regularized Intermediate Density Control
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
190
, pp.
4911
4928
.
18.
Goldberg
,
D. E.
, 2002,
Genetic Algorithms in Search, Optimization and Machine Learning
,”
Addison Wesley Longman, Inc.
, Reading, MA.
19.
Chapman
,
C. D.
,
Saitou
,
K.
, and
Jakiela
,
M. J.
, 1994, “
Genetic Algorithms as an Approach to Configuration and Topology Design
,”
ASME J. Mech. Des.
1050-0472,
116
, pp.
1005
1012
.
20.
Kane
,
C.
, and
Schoenauer
,
M.
, 1996, “
Topological Optimum Design Using Genetic Algorithms
,”
Contr. Cybernet.
0324-8569,
25
(
5
), pp.
1059
1088
.
21.
Jakiela
,
M. J.
,
Chapman
,
C.
,
Duda
,
J.
,
Adewuya
,
A.
, and
Saitou
,
K.
, 2000, “
Continuum Structural Topology Design With Genetic Algorithms
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
186
, pp.
339
356
.
22.
Tai
,
K.
,
Cui
,
G. Y.
, and
Ray
,
T.
, 2002, “
Design Synthesis of Path Generating Compliant Mechanisms by Evolutionary Optimization of Topology and Shape
,”
ASME J. Mech. Des.
1050-0472,
124
(
3
), pp.
492
500
.
23.
Parsons
,
R.
, and
Canfield
,
S. L.
, 2002, “
Developing Genetic Programming Techniques for the Design of Compliant Mechanisms
,”
Struct. Multidiscip. Optim.
1615-147X,
24
, pp.
78
86
.
24.
Saxena
,
A.
, 2005, “
Synthesis of Compliant Mechanisms for Path Generation Using Genetic Algorithm
,”
ASME J. Mech. Des.
1050-0472,
127
, pp.
1
8
.
25.
Saxena
,
A.
, 2005, “
Topology Design of Large Displacement Compliant Mechanisms With Multiple Materials and Multiple Output Ports
,”
Struct. Multidiscip. Optim.
1615-147X,
30
(
6
), pp.
477
490
.
26.
Zhou
,
H.
, and
Ting
,
K. L.
, 2005, “
Topological Synthesis of Compliant Mechanisms Using Spanning Tree Theory
,”
ASME J. Mech. Des.
1050-0472,
127
(
4
), pp.
753
759
.
27.
Zhou
,
H.
, and
Ting
,
K. L.
, 2006, “
Shape and Size Synthesis of Compliant Mechanisms Using Wide Curve Theory
,”
ASME J. Mech. Des.
1050-0472,
128
(
3
), pp.
551
558
.
28.
Mettlach
,
G. A.
, 1996, “
Analysis and Design of Compliant Mechanisms Using Analytical and Graphical Techiniques
,” Ph.D. thesis, Purdue University, West Lafayette, IN.
29.
Crisfield
,
M. A.
, 1991,
Nonlinear Finite Element Analysis of Solids and Structures
,
John Wiley and Sons Inc.
, New York, Vol.
1
.
30.
Belytschko
,
T.
, and
Glaum
,
L. W.
, 1979, “
Applications of Higher Order Corotational Stretch Theories to Nonlinear Finite Element Analysis
,”
Comput. Struct.
0045-7949,
10
, pp.
175
182
.
31.
Belytschko
,
T.
, and
Hsieh
,
B. J.
, 1973, “
Non-linear Transient Finite Element Analysis With Convected Coordinates
,”
Int. J. Numer. Methods Eng.
0029-5981,
7
, pp.
255
271
.
32.
Mankame
,
N. D.
, 2004, “
Investigations on Contact-Aided Compliant Mechanisms
,” Ph.D. thesis, University of Pennsylvania, Philadelphia, PA.
33.
Wang
,
M. Y.
,
Wang
,
X.
, and
Guo
,
D.
, 2003, “
A Level Set Method for Structural Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
192
,
227
246
.
34.
Cox
,
E.
, 2005,
Fuzzy Modeling and Genetic Algorithms for Data Mining and Exploration
,
Morgan Kauffman
, New York.
35.
De Jong
,
K. A.
, 2006,
Evolutionary Computation, a Unified Approach
,
MIT Press
, Cambridge, MA.
36.
Saxena
,
A.
, and
Sahay
,
B.
, 2005,
Computer Aided Engineering Design
,
Anamaya Publishers (India) and Springer
, Dordrecht, The Netherlands.
You do not currently have access to this content.