Although the concepts of Jacobian matrix, manipulability, and condition number have existed since the very early beginning of robotics their real significance is not always well understood. In this paper we revisit these concepts for parallel robots as accuracy indices in view of optimal design. We first show that the usual Jacobian matrix derived from the input-output velocities equations may not be sufficient to analyze the positioning errors of the platform. We then examine the concept of manipulability and show that its classical interpretation is erroneous. We then consider various common local dexterity indices, most of which are based on the condition number of the Jacobian matrix. It is emphasized that even for a given robot in a particular pose there are a variety of condition numbers and that their values are not coherent between themselves but also with what we may expect from an accuracy index. Global conditioning indices are then examined. Apart from the problem of being based on the local accuracy indices that are questionable, there is a computational problem in their calculation that is neglected most of the time. Finally, we examine what other indices may be used for optimal design and show that their calculation is most challenging.

1.
Gough
,
V. E.
, “
Contribution to Discussion of Papers on Research in Automobile Stability, Control and Tyre Performance, 1956–1957
,”
Proc. Inst. Mech. Eng., Part D (J. Automob. Eng.)
0954-4070, pp.
392
394
.
2.
Pierrot
,
F.
,
Dauchez
,
P.
, and
Fournier
,
A.
, 1991, “
Hexa: A Fast Six-DOF Fully Parallel Robot
,”
ICAR
, Pise, pp.
1159
1163
.
3.
Clavel
,
R.
, 1998, “
DELTA, a Fast Robot With Parallel Geometry
,”
18th Int. Symp. on Industrial Robot
, Lausanne, April, pp.
91
100
.
4.
Tsai
,
L.-W.
, 1996, “
Kinematics of a Three-DOF Platform With Three Extensible Limbs
,”
ARK
, Portoroz-Bernadin, pp.
401
410
.
5.
Han
,
C.-S.
,
Tesar
,
D.
, and
Traver
,
A.
, 1989, “
The Optimum Design of a 6 DOF Fully Parallel Micromanipulator for Enhanced Robot Accuracy
,”
ASME Design Automation Conf.
, Montréal, pp.
357
363
.
6.
Gosselin
,
C.
, 1988, “
Kinematic Analysis Optimization and Programming of Parallel Robotic Manipulators
,” Ph.D. thesis, McGill University, Montréal.
7.
Gosselin
,
C.
, and
Angeles
,
J.
, 1990, “
Singularity Analysis of Closed-Loop Kinematic Chains
,”
IEEE Trans. Rob. Autom.
1042-296X,
6
(
3
), pp.
281
290
.
8.
Zlatanov
,
D.
,
Fenton
,
R. G.
, and
Benhabib
,
B.
, 1995, “
A Unifying Framework for Classification and Interpretation of Mechanism Singularities
,”
J. Mech. Des.
1050-0472,
117
(
4
), pp.
566
572
.
9.
Di Gregorio
,
R.
, and
Parenti-Castelli
,
V.
, 2002, “
Geometric Error Effects on the Performances of a Parallel Wrist
,”
3rd Chemnitzer Parallelkinematik Seminar
, Chemnitz, April, pp.
1011
1024
.
10.
Parenti-Castelli
,
V.
, and
Venanzi
,
S.
, 2002, “
On the Joint Clearance Effects in Serial and Parallel Manipulators
,”
Workshop: Fondamental Issues and Future Directions for Parallel Mechanisms and Manipulators
, Québec, pp.
215
223
.
11.
Masory
,
O.
, and
Jihua
,
Y.
, 1995, “
Measurement of Pose Repetability of Stewart Platforms
,”
J. Rob. Syst.
0741-2223,
12
(
12
), pp.
821
832
.
12.
Niaritsiry
,
F.-T.
,
Fazenda
,
N.
, and
Clavel
,
R.
, 2004, “
Study of the Source of Inaccuracy of a 3 DOF Flexure Hinge-Based Parallel Manipulator
,”
IEEE Int. Conf. on Robotics and Automation
, New Orleans, pp.
4091
4096
.
13.
Tischler
,
C. R.
, and
Samuel
,
A. E.
, 1998, “
Predicting the Slop of In-Series∕Parallel Manipulators Caused by Joint Clearances
,”
ARK
, Strobl, pp.
227
236
.
14.
Wang
,
J.
, and
Masory
,
O.
, 1993, “
On the Accuracy of a Stewart Platform, Part I: The Effect of Manufacturing Tolerances
,”
IEEE Int. Conf. on Robotics and Automation
, Atlanta, pp.
114
120
.
15.
Wang
,
S. M.
, and
Ehmann
,
K. F.
, 2002, “
Error Model and Accuracy Analysis of a Six-DOF Stewart Platform
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
124
, pp.
286
295
.
16.
Staffetti
,
E.
,
Bruyninckx
,
H.
, and
De Schutter
,
J.
, 2002, “
On the Invariance of Manipulability Indices
,”
ARK
, Caldes de Malavalla, pp.
57
66
.
17.
Chang
,
W.-T.
,
Lin
,
C.-C.
, and
Lee
,
J.-J.
, 2003, “
Force Transmissibility Performance of Parallel Manipulators
,”
J. Rob. Syst.
0741-2223,
20
(
11
), pp.
659
670
.
18.
Kim
,
H. S.
, and
Choi
,
Y. J.
, 2001, “
Forward∕Inverse Force Transmission Capability Analyses of Fully Parallel Manipulators
,”
IEEE Trans. Rob. Autom.
1042-296X,
17
(
4
), pp.
526
531
.
19.
Han
,
C.
, et al.
, 2002, “
Kinematic Sensitivity Analysis of the 3-UPU Parallel Manipulator
,”
Mech. Mach. Theory
0094-114X,
37
(
8
), pp.
787
798
.
20.
Parenti-Castelli
,
V.
, and
Di Gregorio
,
R.
, 2000, “
Influence of Manufacturing Errors on the Kinematic Performance of the 3-UPU Parallel Mechanism
,”
2nd Chemnitzer Parallelkinematik Seminar
, Chemnitz, pp.
85
99
.
21.
Bonev
,
I. A.
, and
Zlatanov
,
D.
, 2001, “
The Mystery of the Singular SNU Translational Parallel Robot
,” www.parallemic.org∕Reviews∕Review004.htmlwww.parallemic.org∕Reviews∕Review004.html
22.
Di Gregorio
,
R.
, and
Parenti-Castelli
,
V.
, 2002, “
Mobility Analysis of the 3-UPU Parallel Mechanism Assembled for a Pure Translational Motion
,”
J. Mech. Des.
1050-0472,
124
(
2
), pp.
259
264
.
23.
Joshi
,
S. A.
, and
Tsai
,
L.-W.
, 2002, “
Jacobian Analysis of Limited-DOF Parallel Manipulators
,”
J. Mech. Des.
1050-0472,
124
(
2
), pp.
254
258
.
24.
Wolf
,
A.
,
Shoham
,
M.
, and
Park
,
F. C.
, 2002, “
Investigation of Singularities and Self-Motions of the 3-UPU Robot
,”
ARK
, Caldes de Malavalla, pp.
165
174
.
25.
Bonev
,
I. A.
, and
Gosselin
,
C. M.
, 2001, “
Constraint Singularities
,” www.parallemic.org∕Reviews∕Review005.htmlwww.parallemic.org∕Reviews∕Review005.html
26.
Yoshikawa
,
T.
, 1985, “
Manipulability of Robotic Mechanisms
,”
Int. J. Robot. Res.
0278-3649,
4
(
2
), pp.
3
9
.
27.
Pittens
,
K. H.
, and
Podhorodeski
,
R. P.
, 1993, “
A Family of Stewart Platforms With Optimal Dexterity
,”
J. Rob. Syst.
0741-2223,
10
(
4
), pp.
463
479
.
28.
Rao
,
A. B. K.
, et al.
, 2003, “
Workspace and Dexterity Analyses of Hexaslide Machine-Tool
,”
IEEE Int. Conf. on Robotics and Automation
, Taipei, pp.
4104
4109
.
29.
Stoughton
,
R.
, and
Arai
,
T.
, 1993, “
A Modified Stewart Platform Manipulator With Improved Dexterity
,”
IEEE Trans. Rob. Autom.
1042-296X,
9
(
2
), pp.
166
173
.
30.
Downing
,
D. M.
,
Samuel
,
A. E.
, and
Hunt
,
K. H.
, 2002, “
Identification of the Special Configurations of the Octahedral Manipulators Using the Pure Condition
,”
Int. J. Robot. Res.
0278-3649,
21
(
2
), pp.
147
159
.
31.
Funabashi
,
H.
, and
Takeda
,
Y.
, 1995, “
Determination of Singular Points and Their Vicinity in Parallel Manipulators Based on the Transmission Index
,”
9th World Congress on the Theory of Machines and Mechanisms
, Milan, pp.
1977
1981
.
32.
Voglewede
,
P. A.
, and
Ebert-Uphoff
,
I.
, 2004, “
Measuring ‘Closeness’ to Singularities for Parallel Manipulators
,”
IEEE Int. Conf. on Robotics and Automation
, New Orleans, pp.
4539
4544
.
33.
Bhattacharya
,
S.
,
Hatwal
,
H.
, and
Ghosh
,
A.
, 1995, “
On the Optimum Design of a Stewart Platform Type Parallel Manipulators
,”
Robotica
0263-5747,
13
(
2
), pp.
133
140
.
34.
Chablat
,
D.
,
Wenger
,
P.
, and
Merlet
,
J.-P.
, 2004, “
A Comparative Study Between Two Three-DOF Parallel Kinematic Machines Using Kinetostatic Criteria and Interval Analysis
,”
11th World Congress on Theory of Machines and Mechanisms
, Tianjin, April, pp.
1209
1213
.
35.
Hay
,
A. M.
, and
Snyman
,
J. A.
, 2002, “
The Optimal Synthesis of Parallel Manipulators for Desired Workspace
,”
ARK
, Caldes de Malavalla, pp.
337
346
.
36.
Hong
,
K. S.
, and
Kim
,
J.-G.
, 2000, “
Manipulability Analysis of a Parallel Machine Tool: Application to Optimal Link Length Design
,”
J. Rob. Syst.
0741-2223,
17
(
8
), pp.
403
415
.
37.
Hong
,
K.-S.
, 2003, “
Kinematic Optimal Design of a New Parallel-Type Rolling Mill: Paramill
,”
Adv. Rob.
0169-1864,
17
(
9
), pp.
837
862
.
38.
Masuda
,
T.
, et al.
, 2002, “
Mechanism Configuration Evaluation of a Linear-Actuated Parallel Mechanism Using Manipulability
,”
IEEE Int. Conf. on Robotics and Automation
, Washington, pp.
489
495
.
39.
Stamper
,
R. C.
,
Tsai
,
C.-W.
, and
Walsh
,
G. C.
, 1997, “
Optimization of a Three DOF Translational Platform for Well-Conditionned Workspace
,”
IEEE Int. Conf. on Robotics and Automation
, Albuquerque, pp.
3250
3255
.
40.
Tsai
,
L.-W.
, and
Joshi
,
S.
, 2000, “
Kinematics and Optimization of a Spatial 3-UPU Parallel Manipulator
,”
J. Mech. Des.
1050-0472,
112
(
4
), pp.
439
446
.
41.
Zanganeh
,
K. E.
, and
Angeles
,
J.
, 1997, “
Kinematic Isotropy and the Optimum Design of Parallel Manipulators
,”
Int. J. Robot. Res.
0278-3649,
16
(
2
), pp.
185
197
.
42.
Chablat
,
D.
,
Wenger
,
P.
, and
Merlet
,
J.-P.
, 2002, “
Workspace Analysis of the Orthoglide Using Interval Analysis
,”
ARK
, Caldes de Malavalla, pp.
397
406
.
43.
Ma
,
O.
, and
Angeles
,
J.
, 1991, “
Optimum Architecture Design of Platform Manipulator
,”
ICAR
, Pise, pp.
1131
1135
.
44.
Kim
,
S.-G.
, and
Ryu
,
J.
, 2003, “
New Dimensionally Homogeneous Jacobian Matrix Formulation by Three End-Effector Points for Optimal Design of Parallel Manipulators
,”
IEEE Trans. Rob. Autom.
1042-296X,
19
(
4
), pp.
731
736
.
45.
Park
,
M. K.
, and
Kim
,
J. W.
, 1996, “
Kinematic Manipulability of Closed Chains
,”
ARK
, Portoroz-Bernadin, pp.
99
108
.
46.
Angeles
,
J.
, 2002, “
The Robust Design of Parallel Manipulators
,”
1st Int. Colloquium, Collaborative Research Centre 562
, Braunschweig, pp.
9
30
.
47.
Baron
,
L.
,
Wang
,
X.
, and
Cloutier
,
G.
, 2002, “
The Isotropic Conditions of Parallel Manipulators of Delta Topology
,”
ARK
, Caldes de Malavalla, pp.
357
366
.
48.
Carricato
,
M.
, and
Parenti-Castelli
,
V.
, 2002, “
Singularity-Free Fully Isotropic Translational Parallel Mechanisms
,”
Int. J. Robot. Res.
0278-3649,
21
(
2
), pp.
161
174
.
49.
Fattah
,
A.
, and
Hasan Ghasemi
,
A. M.
, 2002, “
Isotropic Design of Spatial Parallel Manipulators
,”
Int. J. Robot. Res.
0278-3649,
21
(
9
), pp.
811
824
.
50.
Tsai
,
K.-Y.
, and
Huang
,
K. D.
, 2003, “
The Design of Isotropic 6-DOF Parallel Manipulators Using Isotropy Generators
,”
Mech. Mach. Theory
0094-114X,
38
(
11
), pp.
1199
1214
.
51.
Wenger
,
P.
, and
Chablat
,
D.
, 2002, “
Design of a Three-Axis Isotropic Parallel Manipulator for Machining Applications: The Orthoglide
,”
Workshop: Fondamental Issues and Future Directions for Parallel Mechanisms and Manipulators
, Québec, pp.
16
23
.
52.
Zanganeh
,
K. E.
, and
Angeles
,
J.
, 1995, “
On the Isotropic Design of General Six-Degree-of-Freedom Parallel Manipulators
,”
Computational Kinematics
,
J.-P.
Merlet
and
B.
Ravani
eds.,
Kluwer
, Dordrecht, pp.
213
220
.
53.
Jafari
,
F.
, and
McInroy
,
J. E.
, 2003, “
Orthogonal Gough-Stewart Platforms for Micromanipulation
,”
IEEE Trans. Rob. Autom.
1042-296X,
19
(
4
), pp.
595
603
.
54.
Krut
,
S.
, et al.
, 2004, “
A High-Speed Parallel Robot for Scara Motion
,”
IEEE Int. Conf. on Robotics and Automation
, New Orleans, pp.
4109
4115
.
55.
Pham
,
H. H.
, and
Chen
,
I.-M.
, 2004, “
Optimal Synthesis for Workspace and Manipulability of Parallel Flexure Mechanism
,”
11th World Congress on Theory of Machines and Mechanisms
, Tianjin.
56.
Kim
,
H. S.
, and
Choi
,
Y. J.
, 2000, “
The Kinematic Error Bound Analysis of the Stewart Platform
,”
J. Rob. Syst.
0741-2223,
17
(
1
), pp.
63
73
.
57.
Patel
,
A. J.
, and
Ehmann
,
K. F.
, 1997, “
Volumetric Error Analysis of a Stewart Platform Based Machine Tool
,”
CIRP Ann.
0007-8506,
46
(
1
), pp.
287
290
.
58.
Merlet
,
J.-P.
, and
Daney
,
D.
, 2005, “
Dimensional Synthesis of Parallel Robots With a Guaranteed Given Accuracy Over a Specific Workspace
,”
IEEE Int. Conf. on Robotics and Automation
, Barcelona.
You do not currently have access to this content.