One hundred years ago, Eduard Study introduced a very elegant method to describe a rigid body displacement in three-space. He mapped each position of a rigid body onto a point on a quadric, now called the Study quadric. This quadric is a six-dimensional rational hyper-surface, embedded in a seven-dimensional projective real space, called Study’s soma space. More than half a century later Ravani and Roth reconfigured Study’s soma space into a three-dimensional dual projective space, and defined a geometric metric for rigid body displacements. Here, approximately 20 years later, we again use Study’s quadric and define a new metric for rigid body displacements based on an optimized local mapping of the quadric. The local mappings of the quadric are achieved using stereographic projections, resulting in an affine space where the Euclidean definition of a metric can be used for rigid body displacements and techniques from design of curves and surfaces can be directly utilized for motion design. The results are illustrated by examples.

1.
Study, E., 1903, Geometrie der Dynamen—Die Zusammensetzung von Kra¨ften und verwandte Gegensta¨nde der Geometrie, Leipzig, Verlag und Druck von B. G. Teubner.
2.
Ravani
,
B.
, and
Roth
,
B.
,
1984
, “
Mappings of Spatial Kinematics
,”
ASME J. Mech. Transm., Autom. Des.
,
106
, pp.
341
347
.
3.
Eberharter, J.K., Pottmann, H., and Ravani, B., 2003, “Stereographic Projection of Study’s Quadric,” Proceedings—Dresden Symposium Geometry: CK, TU Dresden (Institut fu¨r Geometrie).
4.
Ravani
,
B.
, and
Roth
,
B.
,
1983
, “
Motion Synthesis Using Kinematic Mappings
,”
ASME J. Mech. Transm., Autom. Des.
,
105
, pp.
460
467
.
5.
Larochelle, P., 2000, “Approximate Motion Synthesis via Parametric Constraint Manifold Fitting,” Proc. of Advances in Robot Kinematics (ARK), Piran, Slovenia.
6.
Larochelle, P., and Dees, S., 2002, “Approximate Motion Synthesis using an SVD-based Distance Metric,” Proceedings of the 8th International Symposium on Advances in Robot Kinematics (ARK), Caldes de Malavella, Spain, June 24–28.
7.
Ge
,
Q. J.
, and
Ravani
,
B.
,
1994
, “
Computer Aided Geometric Design of Motion Interpolants
,”
ASME J. Mech. Des.
,
116
, pp.
756
762
.
8.
Blaschke
,
W.
,
1912
, “
Euklidische Kinematik und nichteuklidische Geometrie I.II.
,”
Zeitschrift fu¨r Mathematik und Physik
,
pp.
61
91
, (corrections pp. 203–204).
9.
Blaschke, W., 1960, Kinematik und Quaternionen, VEB Deutscher Verlag der Wissenschaften, Berlin.
10.
McCarthy, J. M., 1990, An Introduction to Theoretical Kinematics, The MIT Press.
11.
Kazerounian, K., and Rastegar, J., 1992, “Object Norms: A Class of Coordinate and Metric Independent Norms for Displacements,” Proceedings of ASME Design Technical Conferences, 47, Flexible Mechanisms, Dynamics, and Analysis.
12.
Martinez-Rico
,
J. M.
, and
Duffy
,
J.
,
1995
, “
On the Metrics of Rigid Body Displacements for Infinite and Finite Bodies
,”
ASME J. Mech. Des.
,
117
, pp.
41
47
.
13.
Park
,
F. C.
,
1995
, “
Distance Metric on the Rigid-Body Motions With Applications to Mechanism Design
,”
Trans. ASME
,
117
, pp.
48
54
.
14.
Ju¨ttler, B., 1994, “Rationale Be´zierdarstellung ra¨umlicher Bewegungsvorga¨nge und ihre Anwendung zur Beschreibung bewegter Objekte,” Dissertation, Technische Hochschule Darmstadt.
15.
Ju¨ttler, B., 1995, “Spatial Rationale Motions and their Application in Computer Aided Geometric Design,” Mathematical Methods for Curves and Surfaces, M. Dæhlen, T. Lyche, and L. L. Schumaker, eds., pp. 271–280.
16.
Gupta
,
K. C.
,
1997
, “
Measures of Positional Error for a Rigid Body
,”
ASME J. Mech. Des.
,
119
, pp.
346
348
.
17.
Etzel
,
K. R.
, and
McCarthy
,
J. M.
,
1996
, “
A Metric for Spatial Displacements Using Biquaternions on SO(4)
,”
Proceedings of the IEEE Robotics and Automation Conferences
,
4
, pp.
3185
3190
.
18.
Etzel
,
K. R.
, and
McCarthy
,
J. M.
,
1999
, “
Interpolation of Spatial Displacements Using the Clifford Algebra of E4,
ASME J. Mech. Des.
,
121
, pp.
39
44
.
19.
Larochelle, P. 2000, “On the Geometry of Approximate Bi-Invariant Projective Displacement Metrics,” Proc. of the World Congress on the Theory of Machines and Mechanisms, Oulu, Finland.
20.
McCarthy
,
J. M.
,
1983
, “
Planar and Spatial Rigid Motion as Special Cases of Spherical and 3-Spherical Motion
,”
ASME J. Mech. Transm., Autom. Des.
,
105
(
3
), pp.
569
575
.
21.
Chirikjian
,
G. S.
, and
Zhou
,
S.
,
1998
, “
Metrics on Motion and Deformation of Solid Models
,”
ASME J. Mech. Des.
,
120
, pp.
252
261
.
22.
Lin
,
Q.
, and
Burdick
,
J. W.
,
2000
, “
Objective and Frame-Invariant Kinematic Metric Functions for Rigid Bodies
,”
Int. J. Robot. Res.
,
19
(
6
), pp.
612
625
.
23.
Park, F. C., Murray, A. P., and McCarthy, J. M., 1993, “Design Mechanisms for Workspace Fit,” Angeles, J., et al., eds., Computational Kinematics, Kluwer Academic Publishers, pp. 295–306.
24.
Wallner, J., 2002, “Some Properties of Invariant Metrics in Lie-Groups,” (private communication).
25.
Zˇefran
,
M.
, and
Kumar
,
V.
,
1998
, “
Interpolation Schemes for Rigid Body Motions
,”
Comput.-Aided Des.
,
30
(
3
), pp.
179
189
.
26.
Fanghella
,
P.
, and
Galletti
,
C.
,
1995
, “
Metric Relations and Displacement Groups in Mechanism and Robot Kinematics
,”
ASME J. Mech. Des.
,
117
, pp.
470
478
.
27.
Bottema, O., and Roth, B., 1979, Theoretical Kinematics, North-Holland Publishing Company, Amsterdam New York Oxford.
28.
Ge
,
Q. J.
, and
Ravani
,
B.
,
1994
, “
Geometric Construction of Be´zier Motions
,”
ASME J. Mech. Des.
,
116
, pp.
749
755
.
29.
Wampler
,
C. W.
,
1996
, “
Forward Displacement of General Six-In-Parallel SPS (Stewart) Platform Manipulators Using Soma Coordinates
,”
Mech. Mach. Theory
,
31
(
3
), pp.
331
337
.
30.
Husty, M. L., Karger, A., Sachs, H., and Steinhilper, W., 1997, Kinematik und Robotik, Springer-Verlag, Berlin, Germany.
31.
Gfrerrer, A., 2000, “Study’s Kinematic Mapping—A Tool for Motion Design,” Lenarcˇic¯, J. and Stanis¯ic´, M. M., eds., Advances in Robot Kinematics (ARK), pp. 7–16.
32.
Beck, H., 1919, U¨ber lineare Somenmannigfaltigkeiten, Bonn.
33.
Gfrerrer, A., 2001, “Study’s Kinematic Mapping,” Institute of Geometry, Graz University of Technology, (private communication).
34.
Weiss, E. A., 1935, “
Einfu¨hrung in die Liniengeometrie und Kinematik,” Teubners Mathematische Leitfa¨den Band, 41, Leipzig und Berlin, Verlag und Druck von B. G. Teubner.
35.
Chasles
,
M.
,
1831
, “
Note sur les proprie´te´s ge´ne´rales du syste`me de deux corps semblables entre eux, place´s d’une manie`re quelconque dans l’espace; et sur le de´placement fini, ou infiniment petit d’un corps solide libre
,”
Bulletin des Sciences Mathe´matiques de Fe´russac
,
XIV
, pp.
321
336
.
36.
Pottmann, H., and Wallner, J., 2001, Computational Line Geometry, Springer-Verlag Berlin Heidelberg.
37.
Weiss
,
G.
,
1983
, “
Zur Euklidischen Differentialgeometrie der Regelfla¨chen
,”
Resultate der Mathematik
,
6
(
2
), pp.
220
250
.
38.
Arnold, V. I., 1989, Mathematical Methods of Classical Mechanics, Second Edition, Springer-Verlag, New York.
39.
Hofer, M., Pottmann, H., and Ravani, B., 2002, “From Curve Design Algorithms to Motion Design,” Technical Report No. 95, Technical University of Vienna.
40.
Chaikin
,
G. M.
,
1974
, “
An Algorithm for High-Speed Curve Generation
,”
Comput. Graph. Image Process.
,
3
, pp.
346
349
.
41.
Dyn, N., 1989, “Interpolation and Approximation by Radial and Related Functions,” Chui, C. K., Schumaker, L. L., Ward, J. D., eds., Approximation Theory VI, Vol. 1, Academic Press, pp. 211–234.
42.
Hoschek, J., and Lasser, D., 1993, Fundamentals of Computer Aided Geometric Design, A. K. Peters, Ltd..
43.
Eberharter, J. K., and Ravani, B., 2003, “Local Metrics for Rigid Body Displacements,” Bernhard Roth Symposium, Stanford. http://synthetica.eng.uci.edu/mccarthy/BernieRothCD/BRMenu.html
You do not currently have access to this content.