Abstract

Critical parts of engineering structures are usually subjected to asymmetric multiaxial fatigue loads. In this study, a new multiaxial equivalent stress ratio is defined, combining multiaxial fatigue damage parameters (based on π-plane projection) with the Walker equation to enhance the methodology for considering the effects of mean stress on multiaxial fatigue life. The new mean stress criterion is applicable to biaxial and more complex asymmetric loading conditions. Subsequently, the predictive results of the new criterion are compared with those of three established criteria using experimental data of four commonly used materials reported in the literature. The results indicate that the new mean stress criterion effectively accounts for the mean stress effects in multiaxial fatigue, offering greater simplicity and accuracy than the existing criteria. Furthermore, a good linear correlation is observed between the multiaxial correction exponent and material constants. To further validate the material applicability of the proposed model, multiaxial fatigue tests were conducted on 304 stainless steel under varying loading paths. The results demonstrate that the new criterion possesses good predictive accuracy and applicability, showing significant potential for predicting multiaxial fatigue life in engineering structures.

References

1.
Goodman
,
J.
,
1919
,
Mechanics Applied to Engineering
,
Longmans, Green and Co
,
London
.
2.
Morrow
,
J.
,
1968
, “Fatigue Properties of Metals,”
SAE Fatigue Design Handbook
,
R. C.
Rice
, ed.,
SAE International
,
Warrendale, PA
, pp.
21
30
.
3.
Smith
,
K. N.
,
Watson
,
P.
, and
Topper
,
T. H.
,
1970
, “
A Stress-Strain Function for the Fatigue of Metals
,”
J. Mater. ASTM
,
5
, pp.
767
778
.
4.
Walker
,
K.
,
1970
, “The Effect of Stress Ratio During Crack Propagation and Fatigue for 2024-T3 and 7075-T6 Aluminum,”
Effects of Environment and Complex Load History on Fatigue Life
,
M. S.
Rosenfeld
, ed.,
ASTM International
,
Philadelphia, PA
, pp.
1
14
..
5.
Nihei
,
M.
,
Heuler
,
P.
,
Boller
,
C.
, and
Seeger
,
T.
,
1986
, “
Evaluation of Mean Stress Effect on Fatigue Life by Use of Damage Parameters
,”
Int. J. Fatigue
,
8
(
3
), pp.
119
126
.
6.
Bridgman
,
P. W.
,
1964
, “The Stress Distribution at the Neck of a Tension Specimen,”
Collected Experimental Papers
,
P. W.
Bridgman
, ed.,
Harvard University Press
,
Cambridge, MA
, pp.
122
168
.
7.
Chu
,
C. C.
,
2000
, “Comparison of Mean Stress Correction Methods for Fatigue Life Prediction,” SAE 2000 World Congress, Detroit, MI, Mar. 6–9, SAE Paper No.2000–01-0778, pp.
1
6
.
8.
Dowling
,
N. E.
,
Calhoun
,
C. A.
, and
Arcari
,
A.
,
2009
, “
Mean Stress Effects in Stress-Life Fatigue and the Walker Equation
,”
Fatigue Fract. Eng. Mater. Struct.
,
32
(
3
), pp.
163
179
.
9.
Dowling
,
N. E.
,
2009
, “
Mean Stress Effects in Strain-Life Fatigue
,”
Fatigue Fract. Eng. Mater. Struct.
,
32
(
12
), pp.
1004
1019
.
10.
Brown
,
M. W.
, and
Miller
,
K. J.
,
1973
, “
A Theory for Fatigue Failure Under Multiaxial Stress-Strain Conditions
,”
Proc. Inst. Mech. Eng.
,
187
(
1
), pp.
745
755
.
11.
Fatemi
,
A.
, and
Socie
,
D. F.
,
1988
, “
A Critical Plane Approach to Multiaxial Fatigue Damage Including Out of Plane Loading
,”
Fatigue Fract. Eng. Mater. Struct.
,
11
(
3
), pp.
149
165
.
12.
Chu
,
C. C.
,
Conle
,
A.
, and
Bonnen
,
J.
,
1993
, “Multiaxial Stress-Strain Modelling and Fatigue Life Prediction of SAE Axle Shafts,”
Advances in Multiaxial Fatigue
,
D. L.
McDowell
, and
J. R.
Ellis
, eds.,
ASTM International
,
Philadelphia, PA
, pp.
37
54
..
13.
Gates
,
N. R.
, and
Fatemi
,
A.
,
2017
, “
On the Consideration of Normal and Shear Stress Interaction in Multiaxial Fatigue Damage Analysis
,”
Int. J. Fatigue
,
100
(
1
), pp.
322
336
.
14.
Almamoori
,
M.
, and
Alizadeh
,
Y.
,
2023
, “
A Novel Approach to Multiaxial Fatigue Life Prediction Using the Critical Plane and Phase Difference Angle
,”
Eng. Fail. Anal.
,
154
, pp.
107654
.
15.
Markham
,
M. J.
, and
Fatemi
,
A.
,
2024
, “
Multiaxial Fatigue Life Predictions of Additively Manufactured Metals Using a Hybrid of Linear Elastic Fracture Mechanics and a Critical Plane Approach
,”
Int. J. Fatigue
,
178
, pp.
107979
.
16.
Seyda
,
J.
,
Pejkowski
,
L.
, and
Chorobiński
,
M.
,
2024
, “
Study on the Behavior of Small Cracks in PA38-T6 (6060-T6) Aluminum Alloy Under Multiaxial Fatigue Loadings
,”
Int. J. Fatigue
,
184
, pp.
108282
.
17.
Pascoe
,
K. J.
, and
De Villiers
,
J. W. R.
,
1967
, “
Low Cycle Fatigue of Steels Under Biaxial Straining
,”
J. Strain Anal.
,
2
(
2
), pp.
117
126
.
18.
Shang
,
D. G.
, and
Wang
,
D. J.
,
1998
, “
A New Multiaxial Fatigue Damage Model Based on the Critical Plane Approach
,”
Int. J. Fatigue
,
20
(
3
), pp.
241
245
.
19.
Itoh
,
T.
,
Sakane
,
M.
,
Ohnami
,
M.
, and
Socie
,
D. F.
,
1995
, “
Nonproportional Low Cycle Fatigue Criterion for Type 304 Stainless Steel
,”
ASME J. Eng. Mater.
,
117
(
3
), pp.
285
292
.
20.
Zhong
,
B.
,
Wang
,
Y. R.
,
Wei
,
D. S.
, and
Wang
,
J. L.
,
2017
, “
A New Life Prediction Model for Multiaxial Fatigue Under Proportional and Non-Proportional Loading Paths Based on the Pi-Plane Projection
,”
Int. J. Fatigue
,
102
, pp.
241
251
.
21.
Glinka
,
G.
,
Wang
,
G.
, and
Plumtree
,
A.
,
1995
, “
Mean Stress Effects in Multiaxial Fatigue
,”
Fatigue Fract. Eng. Mater. Struct.
,
18
(
7-8
), pp.
755
764
.
22.
Wu
,
M.
,
Itoh
,
T.
,
Shimizu
,
Y.
,
Nakamura
,
H.
, and
Takanashi
,
M.
,
2017
, “
Effect of Mean Strain on Multiaxial Low Cycle Fatigue Life of Ti-6Al-4 V Under Non-Proportional Loading
,”
Japan Soc. Mech. Eng.
,
1132
, pp.
1165
1167
.
23.
Wu
,
M.
,
Itoh
,
T.
,
Shimizu
,
Y.
,
Nakamura
,
H.
, and
Takanashi
,
M.
,
2010
, “
Mean Strain Effect on Multiaxial Fatigue Behavior of Ti-6Al-4 V Under Non-Proportional Loading
,”
ICMFF9
,
Parma, Italy
,
June 7–9, 2010
, pp.
381
388
.
24.
Socie
,
D. F.
,
1987
, “
Multiaxial Fatigue Damage Models
,”
ASME J. Eng. Mater.
,
109
(
4
), pp.
293
298
.
25.
Fatemi
,
A.
, and
Kurath
,
P.
,
1988
, “
Multiaxial Fatigue Life Predictions Under the Influence of Mean-Stress
,”
ASME J. Eng. Mater.
,
110
(
3
), pp.
380
388
.
26.
Zhong
,
B.
,
Wang
,
Y. R.
,
Wei
,
D. S.
,
Zhang
,
K. S.
, and
Wang
,
J. L.
,
2018
, “
Multiaxial Fatigue Life Prediction for Powder Metallurgy Superalloy FGH96 Based on Stress Gradient Effect
,”
Int. J. Fatigue
,
109
, pp.
26
36
.
27.
Timoshenko
,
S. P.
,
1951
,
Theory of Elastic Stability
,
Dover Publications Inc
,
NY
.
28.
Xia
,
Z.
, and
Ellyin
,
F.
,
1991
, “
Nonproportional Multiaxial Cyclic Loading: Experiments and Constitutive Modeling
,”
ASME J. Appl. Mech.
,
58
(
7
), pp.
317
325
.
29.
Dowling
,
N. E.
,
2004
, “Mean Stress Effects in Stress-life and Strain-life Fatigue,” SAE Paper No.2004-01-2227.
30.
Chen
,
H. F.
, and
Salipu
,
A. F.
,
2005
,
Elasticity and Plasticity
,
China Architecture & Building Press
,
Beijing
.
31.
Meggiolaro
,
M. A.
, and
Castro
,
J. T.
,
2022
, “
A Deviatoric Tensile-Based Critical Plane Model to Predict Peak/Mean Normal Stress Effects in Multiaxial Fatigue
,”
Int. J. Fatigue
,
155
, pp.
106615
.
32.
Wang
,
X. W.
,
Shang
,
D. G.
, and
Sun
,
Y. J.
,
2018
, “
Multiaxial High-Cycle Fatigue Life Prediction Model Considering Mean Shear Stress Effect Under Constant and Variable Amplitude Loading
,”
Theor. Appl. Fract. Mec.
,
96
, pp.
676
687
.
33.
Wang
,
C. H.
, and
Miller
,
K. J.
,
2000
, “
The Effect of Mean Shear Stress on Torsional Fatigue Behavior
,”
Fatigue Fract. Eng. Mater. Struct.
,
14
(
2–3
), pp.
293
307
.
34.
Chen
,
Y. J.
,
Liu
,
B.
, and
Liu
,
C. C.
,
2017
, “
Multiaxial Fatigue Test of Aeronautical Aluminum Alloys 2A12 and Research on Stress Criterion Life Predictive Model
,”
China Mech. Eng.
,
28
, pp.
1092
1096
.
35.
Wu
,
Z. R.
,
2014
, “
Research on Multiaxial Fatigue Life Prediction Method for Titanium Alloy
,”
Ph.D. dissertation
,
Nanjing University of Aeronautics and Astronautics, Nanjing, China
.
36.
Socie
,
D. F.
,
Kurath
,
P.
, and
Koch
,
J.
,
1989
, “A Multiaxial Fatigue Damage Parameter,”
Biaxial and Multiaxial Fatigue
,
M. W.
Brown
, and
K. J.
Miller
, eds.,
Mechanical Engineering Publications
,
London, UK
, pp.
535
550
.
37.
Jiang
,
Y.
,
Hertel
,
O.
, and
Vormwald
,
M.
,
2007
, “
An Experimental Evaluation of Three Critical Plane Multiaxial Fatigue Criteria
,”
Int. J. Fatigue
,
29
(
8
), pp.
1490
1502
.
38.
Yang
,
S.
,
Zeng
,
W.
, and
Yang
,
J. S.
,
2020
, “
Characterization of Shot Peening Properties and Modeling on the Fatigue Performance of 304 Austenitic Stainless Steel
,”
Int. J. Fatigue
,
137
, pp.
105621
.
39.
Liu
,
T. Q.
,
Shi
,
X. H.
,
Zhang
,
J. Y.
, and
Fen
,
B. J.
,
2019
, “
Multiaxial High-Cycle Fatigue Failure of 30CrMnSiA Steel With Mean Tension Stress and Mean Shear Stress
,”
Int. J. Fatigue
,
129
, pp.
105219
.
40.
Gryguć
,
A.
,
Behravesh
,
S. B.
,
Jahed
,
H.
,
Wells
,
M.
,
Williams
,
B.
, and
Su
,
X.
,
2020
, “
Multiaxial Fatigue and Cracking Orientation of Forged AZ80 Magnesium Alloy
,”
Procedia Struct. Integrity
,
25
, pp.
486
495
.
41.
Gryguc
,
A.
,
Karparvarfard
,
S. M.
,
Roostaei
,
A.
,
Toscano
,
D.
,
Shaha
,
S.
,
Behravesh
,
B.
, and
Jahed
,
H.
,
2020
, “On the Load Multiaxiality Effect on the Cyclic Behaviour of Magnesium Alloys,”
Magnesium Technology 2020
,
J. B.
Jordon
,
V.
Miller
, and
V. V.
Joshi
, eds.,
Springer Cham
,
Cham, Switzerland
, pp.
151
159
.
You do not currently have access to this content.