Abstract

Our model, treating oxide as solid annulus freely expanded from the silicon (Si) consumed due to increased molecular volume whose geometry enables closed-form expression of time as a function of thickness in constant-parameters case, was revised in non-dimensional form maintaining the appearance of the original Si radius. While this constant-parameters case describes oxide thickness decreasing with decreasing Si radius in concave cases as reported from the experiment, in convex cases thickness is instead described to increase with decreasing Si radius, contradicting published experimental observations. Performing stress analysis displacing surfaces of expanded oxide and remaining Si back to their shared interface, stress-dependent solubility, diffusivity, and reaction rate were investigated toward resolving this discrepancy between the model and reported experiments. With stress-dependent parameters, closed-form expression of time as a function of oxide thickness is no longer achieved, with numerical integration instead required to compute oxidation times. If considering solubility or diffusivity to increase with hydrostatic stress or reaction rate to decrease with increasing interface pressure radially, as hypothesized, increasing oxide thickness with decreasing original Si radius in convex cases remains predicted, in conflict with experimental reports in the literature. It is shown that the experimental observation of an oxide thickness decreasing with decreasing Si radius in convex cases is possible if considering reaction rate to instead increase with increasing interfacial pressure. The same may be possible if considering solubility or diffusivity to instead decrease with increasing hydrostatic stress, tuning activation energies describing the strength of such dependence.

References

1.
Deal
,
B. E.
, and
Grove
,
A. S.
,
1965
, “
General Relationship for the Thermal Oxidation of Silicon
,”
J. Appl. Phys.
,
36
(
12
), pp.
3770
3778
.
2.
Marcus
,
R. B.
, and
Sheng
,
T. T.
,
1982
, “
The Oxidation of Shaped Silicon Surfaces
,”
J. Electrochem. Soc.
,
129
(
6
), pp.
1278
1282
.
3.
Kao
,
D.-B.
,
McVittie
,
J. P.
,
Nix
,
W. D.
, and
Saraswat
,
K. C.
,
1987
, “
Two-Dimensional Thermal Oxidation of Silicon—I. Experiments
,”
IEEE Trans. Electron Devices
,
34
(
5
), pp.
1008
1017
.
4.
Krzeminski
,
C. D.
,
Han
,
X.-L.
, and
Larrieu
,
G.
,
2012
, “
Understanding of the Retarded Oxidation Effects in Silicon Nanostructures
,”
Appl. Phys. Lett.
,
100
(
26
), p.
263111
.
5.
Liu
,
H. I.
,
Biegelsen
,
D. K.
,
Ponce
,
F. A.
,
Johnson
,
N. M.
, and
Pease
,
R. F. W.
,
1994
, “
Self-Limiting Oxidation for Fabricating Sub-5 nm Silicon Nanowires
,”
Appl. Phys. Lett.
,
64
(
11
), pp.
1383
1385
.
6.
Liu
,
M.
,
Jin
,
P.
,
Xu
,
Z.
,
Hanaor
,
D. A. H.
,
Gan
,
Y.
, and
Chen
,
C.
,
2016
, “
Two-Dimensional Modeling of the Self-Limiting Oxidation in Silicon and Tungsten Nanowires
,”
Theoret. Appl. Mech. Lett.
,
6
(
5
), pp.
195
199
.
7.
Okada
,
R.
, and
Iijima
,
S.
,
1991
, “
Oxidation Property of Silicon Small Particles
,”
Appl. Phys. Lett.
,
58
(
15
), pp.
1662
1663
.
8.
Kao
,
D.-B.
,
McVittie
,
J. P.
,
Nix
,
W. D.
, and
Saraswat
,
K. C.
,
1988
, “
Two-Dimensional Thermal Oxidation of Silicon—II. Modeling Stress Effects in Wet Oxides
,”
IEEE Trans. Electron Devices
,
35
(
1
), pp.
25
37
.
9.
Lemme
,
B. D.
,
2009
, “
Non-Planar Silicon Oxidation: An Extension of the Deal-Grove Model
,”
M.S. thesis
,
Kansas State University
,
Manhattan, KS
.
10.
Blanchet
,
T. A.
,
2022
, “
Closed-Form General Relationship Model for the Interfacial Oxidation of Cylindrically Curved Surfaces
,”
ASME J. Eng. Mater. Technol.
,
144
(
3
), p.
031009
.
11.
Hsueh
,
C. H.
, and
Evans
,
A. G.
,
1983
, “
Oxidation Induced Stresses and Some Effects on the Behavior of Oxide
,”
J. Appl. Phys.
,
54
(
11
), pp.
6672
6686
.
12.
Yoshikawa
,
K.
,
Nagakubo
,
Y.
, and
Kanzaki
,
K.
,
1984
, “
Two Dimensional Effect on Suppression of Thermal Oxidation Rate
,”
16th Conference on Solid State Devices and Materials
,
Kobe, Japan
,
Aug. 30–Sept. 1
, pp.
475
478
.
13.
Collins
,
J. A.
,
2003
,
Mechanical Design of Machine Elements and Machines: A Failure Prevention Perspective
, 1st ed.,
Wiley
,
New York
, pp.
372
374
.
14.
Coffin
,
H.
,
Bonafos
,
C.
,
Schamm
,
S.
,
Cherkasin
,
N.
,
Assayag
,
G. B.
,
Claverie
,
A.
,
Respaud
,
M.
,
Dimitrakis
,
P.
, and
Normand
,
P.
,
2006
, “
Oxidation of Si Nanocrystals Fabricated by Ultralow-Energy Ion Implantation in Thin SiO2 Layers
,”
J. Appl. Phys.
,
99
(
4
), p.
044302
.
15.
EerNisse
,
E. P.
,
1977
, “
Viscous Flow of Thermal SiO2
,”
Appl. Phys. Lett.
,
30
(
6
), pp.
290
293
.
16.
Sutardja
,
P.
,
Oldham
,
W. G.
, and
Kao
,
D.-B.
,
1987
, “
Modeling of Stress-Effects in Silicon Oxidation Including the Non-Linear Viscosity of Oxide
,”
Proceedings of International Electron Devices Meeting
,
Washington, DC
,
Dec. 6–9
, Vol.
33
, pp.
264
267
.
17.
Sutardja
,
P.
, and
Oldham
,
W. G.
,
1989
, “
Modeling of Stress-Effects in Silicon Oxidation
,”
IEEE Trans. Electron Devices
,
36
(
11
), pp.
2415
2421
.
18.
Chen
,
Y.
,
2000
, “
Modeling of the Self-Limiting Oxidation for Nanofabrication of Si
,”
Technical Proceedings of the 2000 International Conference on Modeling and Simulation of Microsystems
,
San Diego, CA
,
Mar. 27–29
, pp.
56
58
.
19.
Chen
,
Y.
, and
Chen
,
Y.
,
2001
, “
Modeling Silicon Dots Fabrication Using Self-Limiting Oxidation
,”
Microelectron. Eng.
,
57–58
(
1
), pp.
897
901
.
20.
Omachi
,
J.
,
Nakamura
,
R.
,
Nishiguchi
,
K.
, and
Oda
,
S.
,
2001
, “
Retardation in the Oxidation Rate of Nanocrystalline Silicon Quantum Dots
,”
MRS Symposium Proceedings
,
Boston, MA
,
Nov. 26–30
, Vol.
638
.
You do not currently have access to this content.