Abstract

Molecular dynamics studies were performed to assess tensile and compressive behaviors at high temperatures up to 1200 °C for nanostructured polycrystalline AlCoCrFeNi high entropy alloy (HEA). As the temperature increased, the tensile yield stress, tensile/compressive ultimate strengths, and elastic modulus decreased, whereas the compressive yield stress remained constant. The temperature dependence of the phase structures (face-centered cubic (FCC) and hexagonal close-packed (HCP)) showed notable features between tension and compression. The HEA underwent FCC → HCP phase transformation when strained under both tension and compression. The evolution of the intrinsic stacking faults (ISFs) and extrinsic stacking faults (ESFs), which underwent FCC → HCP phase transformation, was observed. During compression, the ISFs → ESFs transition produced parallel twins. The evolution of mean dislocation length for the perfect, Shockley, and stair-rod partial dislocations was observed. Changes in the Shockley and stair-rod partial dislocations were observed after experiencing strain. The temperature dependence of the Shockley partial dislocation was high, whereas the stair-rod partial dislocation exhibited low-temperature dependence. From the simulation results, the structural usage of nanostructured polycrystalline AlCoCrFeNi HEA at elevated temperatures is recommended.

References

1.
Yeh
,
J.-W.
,
Chen
,
S.-K.
,
Lin
,
S.-J.
,
Gan
,
J.-Y.
,
Chin
,
T.-S.
,
Shun
,
T.-T.
,
Tsau
,
C.-H.
, and
Chang
,
S.-Y.
,
2004
, “
Nanostructured High-Entropy Alloys With Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes
,”
Adv. Eng. Mater.
,
6
(
5
), pp.
299
303
.
2.
Park
,
N.
,
Lee
,
B.-J.
, and
Tsuji
,
N.
,
2017
, “
The Phase Stability of Equiatomic CoCrFeMnNi High-Entropy Alloy: Comparison Between Experiment and Calculation Results
,”
J. Alloys Compd.
,
719
, pp.
189
193
.
3.
Praveen
,
S.
, and
Kim
,
H. S.
,
2018
, “
High-Entropy Alloys: Potential Candidates for High-Temperature Applications—An Overview
,”
Adv. Eng. Mater.
,
20
(
1
), p.
1700645
.
4.
Otto
,
F.
,
Dlouhý
,
A.
,
Somsen
,
C.
,
Bei
,
H.
,
Eggeler
,
G.
, and
George
,
E. P.
,
2013
, “
The Influences of Temperature and Microstructure on the Tensile Properties of a CoCrFeMnNi High-Entropy Alloy
,”
Acta Mater.
,
61
(
15
), pp.
5743
5755
.
5.
Li
,
W.
,
Wang
,
G.
,
Wu
,
S.
, and
Liaw
,
P. K.
,
2018
, “
Creep, Fatigue, and Fracture Behavior of High-Entropy Alloys
,”
J. Mater. Res.
,
33
(
19
), pp.
3011
3034
.
6.
Hemphill
,
M. A.
,
Yuan
,
T.
,
Wang
,
G. Y.
,
Yeh
,
J. W.
,
Tsai
,
C. W.
,
Chuang
,
A.
, and
Liaw
,
P. K.
,
2012
, “
Fatigue Behavior of Al0.5CoCrCuFeNi High Entropy Alloys
,”
Acta Mater.
,
60
(
16
), pp.
5723
5734
.
7.
Tong
,
C.-J.
,
Chen
,
M.-R.
,
Yeh
,
J.-W.
,
Lin
,
S.-J.
,
Chen
,
S.-K.
,
Shun
,
T.-T.
, and
Chang
,
S.-Y.
,
2005
, “
Mechanical Performance of the Al x CoCrCuFeNi High-Entropy Alloy System With Multi-Principal Elements
,”
Metall. Mater. Trans. A
,
36
(
5
), pp.
1263
1271
.
8.
Yan
,
Z.
, and
Lin
,
Y.
,
2019
, “
Lomer-Cottrell Locks With Multiple Stair-Rod Dislocations in a Nanostructured Al Alloy Processed by Severe Plastic Deformation
,”
Mater. Sci. Eng. A
,
747
, pp.
177
184
.
9.
Zou
,
Y.
,
Wheeler
,
J. M.
,
Ma
,
H.
,
Okle
,
P.
, and
Spolenak
,
R.
,
2017
, “
Nanocrystalline High-Entropy Alloys: A New Paradigm in High-Temperature Strength and Stability
,”
Nano Lett.
,
17
(
3
), pp.
1569
1574
.
10.
Zou
,
Y.
,
Ma
,
H.
, and
Spolenak
,
R.
,
2015
, “
Ultrastrong Ductile and Stable High-Entropy Alloys at Small Scales
,”
Nat. Commun.
,
6
(
1
), p.
7748
.
11.
Sathiyamoorthi
,
P.
,
Basu
,
J.
,
Kashyap
,
S.
,
Pradeep
,
K. G.
, and
Kottada
,
R. S.
,
2017
, “
Thermal Stability and Grain Boundary Strengthening in Ultrafine-Grained CoCrFeNi High Entropy Alloy Composite
,”
Mater. Des.
,
134
, pp.
426
433
.
12.
Butler
,
T. M.
, and
Weaver
,
M. L.
,
2017
, “
Investigation of the Phase Stabilities in AlNiCoCrFe High Entropy Alloys
,”
J. Alloys Compd.
,
691
, pp.
119
129
.
13.
Panda
,
J. P.
,
Arya
,
P.
,
Guruvidyathri
,
K.
,
Ravikirana
, and
Murty
,
B. S.
,
2021
, “
Studies on Kinetics of BCC to FCC Phase Transformation in AlCoCrFeNi Equiatomic High Entropy Alloy
,”
Metall. Mater. Trans. A
,
52
(
5
), pp.
1679
1688
.
14.
Li
,
W.
,
Fan
,
H.
,
Tang
,
J.
,
Wang
,
Q.
,
Zhang
,
X.
, and
El-Awady
,
J. A.
,
2019
, “
Effects of Alloying on Deformation Twinning in High Entropy Alloys
,”
Mater. Sci. Eng. A
,
763
, p.
138143
.
15.
Kubota
,
S.
,
Xia
,
Y.
, and
Tomota
,
Y.
,
1998
, “
Work-Hardening Behavior and Evolution of Dislocation-Microstructures in High-Nitrogen Bearing Austenitic Steels
,”
ISIJ Int.
,
38
(
5
), pp.
474
481
.
16.
Mohammadi
,
A.
,
Edalati
,
P.
,
Arita
,
M.
,
Bae
,
J. W.
,
Kim
,
H. S.
, and
Edalati
,
K.
,
2023
, “
High Strength and High Ductility of a Severely Deformed High-Entropy Alloy in the Presence of Hydrogen
,”
Corros. Sci.
,
216
, p.
111097
.
17.
Qi
,
Y.
,
Zhao
,
M.
, and
Feng
,
M.
,
2021
, “
Molecular Simulation of Microstructure Evolution and Plastic Deformation of Nanocrystalline CoCrFeMnNi High-Entropy Alloy Under Tension and Compression
,”
J. Alloys Compd.
,
851
, p.
156923
.
18.
Plimpton
,
S.
,
1997
, “
Short-Range Molecular Dynamics
,”
J. Comput. Phys.
,
117
(
1
), pp.
1
42
.
19.
Mohanty
,
S.
,
Maity
,
T. N.
,
Mukhopadhyay
,
S.
,
Sarkar
,
S.
,
Gurao
,
N. P.
,
Bhowmick
,
S.
, and
Biswas
,
K.
,
2017
, “
Powder Metallurgical Processing of Equiatomic AlCoCrFeNi High Entropy Alloy: Microstructure and Mechanical Properties
,”
Mater. Sci. Eng. A
,
679
, pp.
299
313
.
20.
Hirel
,
P.
,
2015
, “
Atomsk: A Tool for Manipulating and Converting Atomic Data Files
,”
Comput. Phys. Commun.
,
197
, pp.
212
219
.
21.
Stukowski
,
A.
,
2010
, “
Visualization and Analysis of Atomistic Simulation Data With OVITO–The Open Visualization Tool
,”
Model. Simul. Mater. Sci. Eng.
,
18
(
1
), p.
015012
.
22.
Voronoi
,
G.
,
1908
, “
Nouvelles Applications des Paramètres Continus à la Théorie de Formes Quadratiques
,”
J. Reine Angew. Math
,
1908
(
134
), p.
198
287
.
23.
Schuh
,
B.
,
Mendez-Martin
,
F.
,
Völker
,
B.
,
George
,
E. P.
,
Clemens
,
H.
,
Pippan
,
R.
, and
Hohenwarter
,
A.
,
2015
, “
Mechanical Properties, Microstructure and Thermal Stability of a Nanocrystalline CoCrFeMnNi High-Entropy Alloy After Severe Plastic Deformation
,”
Acta Mater.
,
96
, pp.
258
268
.
24.
Foiles
,
S. M.
,
Baskes
,
M. I.
, and
Daw
,
M. S.
,
1986
, “
Embedded-Atom-Method Functions for the FCC Metals Cu, Ag, Au, Ni, Pd, Pt, and Their Alloys
,”
Phys. Rev. B
,
33
(
12
), pp.
7983
7991
.
25.
Farkas
,
D.
, and
Caro
,
A.
,
2020
, “
Model Interatomic Potentials for Fe–Ni–Cr–Co–Al High-Entropy Alloys
,”
J. Mater. Res.
,
35
(
22
), pp.
3031
3040
.
26.
Van Swygenhoven
,
H.
,
Farkas
,
D.
, and
Caro
,
A.
,
2000
, “
Grain-Boundary Structures in Polycrystalline Metals at the Nanoscale
,”
Phys. Rev. B
,
62
(
2
), pp.
831
838
.
27.
Li
,
J.
,
Fang
,
Q.
,
Liu
,
B.
, and
Liu
,
Y.
,
2018
, “
Transformation Induced Softening and Plasticity in High Entropy Alloys
,”
Acta Mater.
,
147
, pp.
35
41
.
28.
Stukowski
,
A.
, and
Albe
,
K.
,
2010
, “
Extracting Dislocations and Non-Dislocation Crystal Defects From Atomistic Simulation Data
,”
Model. Simul. Mater. Sci. Eng.
,
18
(
8
), p.
085001
.
29.
Ghassemali
,
E.
,
Sonkusare
,
R.
,
Biswas
,
K.
, and
Gurao
,
N. P.
,
2017
, “
In-Situ Study of Crack Initiation and Propagation in a Dual Phase AlCoCrFeNi High Entropy Alloy
,”
J. Alloys Compd.
,
710
, pp.
539
546
.
30.
Munitz
,
A.
,
Salhov
,
S.
,
Hayun
,
S.
, and
Frage
,
N.
,
2016
, “
Heat Treatment Impacts the Micro-Structure and Mechanical Properties of AlCoCrFeNi High Entropy Alloy
,”
J. Alloys Compd.
,
683
, pp.
221
230
.
31.
Qin
,
G.
,
Xue
,
W.
,
Fan
,
C.
,
Chen
,
R.
,
Wang
,
L.
,
Su
,
Y.
,
Ding
,
H.
, and
Guo
,
J.
,
2018
, “
Effect of Co Content on Phase Formation and Mechanical Properties of (AlCoCrFeNi)100-Co High-Entropy Alloys
,”
Mater. Sci. Eng. A
,
710
, pp.
200
205
.
32.
Qin
,
G.
,
Xue
,
W.
,
Chen
,
R.
,
Zheng
,
H.
,
Wang
,
L.
,
Su
,
Y.
,
Ding
,
H.
,
Guo
,
J.
, and
Fu
,
H.
,
2019
, “
Grain Refinement and FCC Phase Formation in AlCoCrFeNi High Entropy Alloys by the Addition of Carbon
,”
Materialia
,
6
, p.
100259
.
33.
Laplanche
,
G.
,
Gadaud
,
P.
,
Horst
,
O.
,
Otto
,
F.
,
Eggeler
,
G.
, and
George
,
E. P.
,
2015
, “
Temperature Dependencies of the Elastic Moduli and Thermal Expansion Coefficient of an Equiatomic, Single-Phase CoCrFeMnNi High-Entropy Alloy
,”
J. Alloys Compd.
,
623
, pp.
348
353
.
34.
Cheng
,
S.
,
Spencer
,
J. A.
, and
Milligan
,
W. W.
,
2003
, “
Strength and Tension/Compression Asymmetry in Nanostructured and Ultrafine-Grain Metals
,”
Acta Mater.
,
51
(
15
), pp.
4505
4518
.
35.
Miner
,
R. V.
,
Gabb
,
T. P.
,
Gayda
,
J.
, and
Hemker
,
K. J.
,
1986
, “
Orientation and Temperature Dependence of Some Mechanical Properties of the Single-Crystal Nickel-Base Superalloy Ren6 N4: Part III. Tension-Compression Anisotropy
,”
Metall. Trans. A
,
17
(
3
), pp.
507
512
.
36.
Joseph
,
J.
,
Stanford
,
N.
,
Hodgson
,
P.
, and
Fabijanic
,
D. M.
,
2017
, “
Tension/Compression Asymmetry in Additive Manufactured Face Centered Cubic High Entropy Alloy
,”
Scr. Mater.
,
129
, pp.
30
34
.
37.
Jang
,
M. J.
,
Joo
,
S.-H.
,
Tsai
,
C.-W.
,
Yeh
,
J.-W.
, and
Kim
,
H. S.
,
2016
, “
Compressive Deformation Behavior of CrMnFeCoNi High-Entropy Alloy
,”
Met. Mater. Int.
,
22
(
6
), pp.
982
986
.
38.
Ericsson
,
T.
,
1966
, “
The Temperature and Concentration Dependence of the Stacking Fault Energy in the Co-Ni System
,”
Acta Metall.
,
14
(
7
), pp.
853
865
.
39.
Huang
,
S.
,
Li
,
W.
,
Lu
,
S.
,
Tian
,
F.
,
Shen
,
J.
,
Holmström
,
E.
, and
Vitos
,
L.
,
2015
, “
Temperature Dependent Stacking Fault Energy of FeCrCoNiMn High Entropy Alloy
,”
Scr. Mater.
,
108
, pp.
44
47
.
40.
Jarlöv
,
A.
,
Ji
,
W.
,
Zhu
,
Z.
,
Tian
,
Y.
,
Babicheva
,
R.
,
An
,
R.
,
Seet
,
H. L.
,
Nai
,
M. L. S.
, and
Zhou
,
K.
,
2022
, “
Molecular Dynamics Study on the Strengthening Mechanisms of Cr–Fe–Co–Ni High-Entropy Alloys Based on the Generalized Stacking Fault Energy
,”
J. Alloys Compd.
,
905
, p.
164137
.
41.
Olson
,
G. B.
, and
Cohen
,
M.
,
1976
, “
A General Mechanism of Martensitic Nucleation = Part I. General Concepts and the FCC HCP Transformation
,”
Metall. Trans. A
,
7
(
A
), pp.
1897
1904
.
42.
Monk
,
J.
, and
Farkas
,
D.
,
2007
, “
Tension–Compression Asymmetry and Size Effects in Nanocrystalline Ni Nanowires
,”
Philos. Mag.
,
87
(
14–15
), pp.
2233
2244
.
43.
Cui
,
Y.
,
Chen
,
Z.
, and
Ju
,
Y.
,
2020
, “
Fracture of Void-Embedded High-Entropy-Alloy Films: A Comprehensive Atomistic Study
,”
Materialia
,
12
, p.
100790
.
You do not currently have access to this content.