Abstract

In order to further improve the bending performance of the traditional re-entrant (RE) honeycomb, a novel auxetic honeycomb architecture, called RE-L honeycomb, was proposed by adding an additional link-wall structure to the RE cell. The bending behaviors of the novel RE-L honeycomb, including the properties under linear elastic deformation and the bending behaviors under large deformation, were comprehensively investigated by the analytical, numerical, and experimental models. Results show that the proposed RE-L honeycomb significantly improves the bending compliance in the x-direction due to the highly flexible performance of the additional structure, where the bending rigidity and the maximum bending force are only 23% and 29.4% of those of the RE honeycomb, respectively. Besides, the additional structure obviously improves the designability and orthotropic properties of the original auxetic honeycomb. In conclusion, the proposed RE-L shows improved bending performance, which deserves more attention in future research and related applications.

References

1.
Yu
,
X.
,
Zhou
,
J.
,
Liang
,
H.
,
Jiang
,
Z.
, and
Wu
,
L.
,
2018
, “
Mechanical Metamaterials Associated With Stiffness, Rigidity and Compressibility: A Brief Review
,”
Prog. Mater. Sci.
,
94
, pp.
114
173
.
2.
Banhart
,
J.
,
2001
, “
Manufacture, Characterisation and Application of Cellular Metals and Metal Foams
,”
Prog. Mater. Sci.
,
46
(
6
), pp.
559
632
.
3.
Qi
,
C.
,
Jiang
,
F.
, and
Yang
,
S.
,
2021
, “
Advanced Honeycomb Designs for Improving Mechanical Properties: A Review
,”
Composites, Part B
,
227
, p.
109393
.
4.
Tatlıer
,
M. S.
,
Öztürk
,
M.
, and
Baran
,
T.
,
2021
, “
Linear and Non-Linear In-Plane Behaviour of a Modified Re-Entrant Core Cell
,”
Eng. Struct.
,
234
, p.
111984
.
5.
Gibson
,
L. J.
,
Ashby
,
M. F.
,
Schajer
,
G. S.
, and
Robertson
,
C. I.
,
1982
, “
The Mechanics of Two-Dimensional Cellular Materials
,”
Proc. R. Soc. A
,
382
(
1782
), pp.
25
42
.
6.
Gibson
,
L. J.
, and
Ashby
,
M. F.
,
1997
,
Cellular Solids: Structure and Properties
,
Cambridge University Press
,
Cambridge, UK
.
7.
Lakes
,
R.
,
1987
, “
Foam Structures With a Negative Poisson's Ratio
,”
Science
,
235
(
4792
), pp.
1038
1040
.
8.
Lakes
,
R. S.
,
2017
, “
Negative-Poisson's-Ratio Materials: Auxetic Solids
,”
Annu. Rev. Mater. Res.
,
47
(
1
), pp.
63
81
.
9.
Francisco
,
M. B.
,
Pereira
,
J. L. J.
,
Oliver
,
G. A.
,
Roque Da Silva
,
L. R.
,
Cunha
,
S. S.
, and
Gomes
,
G. F.
,
2021
, “
A Review on the Energy Absorption Response and Structural Applications of Auxetic Structures
,”
Mech. Adv. Mater. Struct.
,
29
(
27
), pp.
1
20
.
10.
Qi
,
C.
,
Remennikov
,
A.
,
Pei
,
L.
,
Yang
,
S.
,
Yu
,
Z.
, and
Ngo
,
T. D.
,
2017
, “
Impact and Close-in Blast Response of Auxetic Honeycomb-Cored Sandwich Panels: Experimental Tests and Numerical Simulations
,”
Compos. Struct.
,
180
, pp.
161
178
.
11.
Wang
,
T.
,
Li
,
Z.
,
Wang
,
L.
, and
Hulbert
,
G. M.
,
2020
, “
Crashworthiness Analysis and Collaborative Optimization Design for a Novel Crash-Box With Re-Entrant Auxetic Core
,”
Struct. Multidiscipl. Optim.
,
62
(
4
), pp.
2167
2179
.
12.
Scarpa
,
F.
, and
Tomlin
,
P. J.
,
2000
, “
On the Transverse Shear Modulus of Negative Poisson's Ratio Honeycomb Structures
,”
Fatigue Fract. Eng. Mater. Struct.
,
23
(
8
), pp.
717
720
.
13.
Tan
,
H.
,
He
,
Z.
,
Li
,
E.
,
Cheng
,
A.
,
Chen
,
T.
,
Tan
,
X.
,
Li
,
Q.
, and
Xu
,
B.
,
2021
, “
Crashworthiness Design and Multi-Objective Optimization of a Novel Auxetic Hierarchical Honeycomb Crash Box
,”
Struct. Multidiscipl. Optim.
,
64
(
4
), pp.
2009
2024
.
14.
Menon
,
H. G.
,
Dutta
,
S.
,
Krishnan
,
A.
,
Hariprasad
,
M. P.
, and
Shankar
,
B.
,
2022
, “
Proposed Auxetic Cluster Designs for Lightweight Structural Beams With Improved Load Bearing Capacity
,”
Eng. Struct.
,
260
, p.
114241
.
15.
Prithipaul
,
P. K. M.
,
Kokkolaras
,
M.
, and
Pasini
,
D.
,
2018
, “
Assessment of Structural and Hemodynamic Performance of Vascular Stents Modelled as Periodic Lattices
,”
Med. Eng. Phys.
,
57
, pp.
11
18
.
16.
Masters
,
I. G.
, and
Evans
,
K. E.
,
1996
, “
Models for the Elastic Deformation of Honeycombs
,”
Compos. Struct.
,
35
(
4
), pp.
403
422
.
17.
Hou
,
X.
,
Deng
,
Z.
, and
Zhang
,
K.
,
2016
, “
Dynamic Crushing Strength Analysis of Auxetic Honeycombs
,”
Acta Mech. Solida Sin.
,
29
(
5
), pp.
490
501
.
18.
Bhullar
,
S. K.
,
Lekesiz
,
H.
,
Karaca
,
A. A.
,
Cho
,
Y.
,
Willerth
,
S. M.
, and
Jun
,
M. B. G.
,
2022
, “
Characterizing the Mechanical Performance of a Bare-Metal Stent With an Auxetic Cell Geometry
,”
Appl. Sci.
,
12
(
2
), p.
910
.
19.
Bubert
,
E. A.
,
Woods
,
B. K. S.
,
Lee
,
K.
,
Kothera
,
C. S.
, and
Wereley
,
N. M.
,
2010
, “
Design and Fabrication of a Passive 1D Morphing Aircraft Skin
,”
J. Intell. Mater. Syst. Struct.
,
21
(
17
), pp.
1699
1717
.
20.
Heo
,
H.
,
Ju
,
J.
, and
Kim
,
D.-M.
,
2013
, “
Compliant Cellular Structures: Application to a Passive Morphing Airfoil
,”
Compos. Struct.
,
106
, pp.
560
569
.
21.
Mosadegh
,
B.
,
Polygerinos
,
P.
,
Keplinger
,
C.
,
Wennstedt
,
S.
,
Shepherd
,
R. F.
,
Gupta
,
U.
,
Shim
,
J.
,
Bertoldi
,
K.
,
Walsh
,
C. J.
, and
Whitesides
,
G. M.
,
2014
, “
Pneumatic Networks for Soft Robotics That Actuate Rapidly
,”
Adv. Funct. Mater.
,
24
(
15
), pp.
2163
2170
.
22.
Holman
,
H.
,
Kavarana
,
M. N.
, and
Rajab
,
T. K.
,
2021
, “
Smart Materials in Cardiovascular Implants: Shape Memory Alloys and Shape Memory Polymers
,”
Artif. Organs
,
45
(
5
), pp.
454
463
.
23.
Pan
,
C.
,
Han
,
Y.
, and
Lu
,
J.
,
2021
, “
Structural Design of Vascular Stents: A Review
,”
Micromachines.
,
12
(
7
), p.
770
.
24.
Chen
,
Y.
,
Fu
,
M.
,
Hu
,
H.
, and
Xiong
,
J.
,
2022
, “
Curved Inserts in Auxetic Honeycomb for Property Enhancement and Design Flexibility
,”
Compos. Struct.
,
280
, p.
114892
.
25.
Xu
,
N.
,
Liu
,
H.
,
An
,
M.
, and
Wang
,
L.
,
2021
, “
Novel 2D Star-Shaped Honeycombs With Enhanced Effective Young’s Modulus and Negative Poisson’s Ratio
,”
Extreme Mech. Lett.
,
43
, p.
101164
.
26.
Fu
,
M.H.
,
Chen
,
Y.
, and
Hu
,
L.-L.
,
2017
, “
Bilinear Elastic Characteristic of Enhanced Auxetic Honeycombs
,”
Compos. Struct.
,
175
, pp.
101
110
.
27.
Li
,
X.
,
Wang
,
Q.
,
Yang
,
Z.
, and
Lu
,
Z.
,
2019
, “
Novel Auxetic Structures With Enhanced Mechanical Properties
,”
Extreme Mech. Lett.
,
27
, pp.
59
65
.
28.
Tan
,
H. L.
,
He
,
Z. C.
,
Li
,
K. X.
,
Li
,
E.
,
Cheng
,
A. G.
, and
Xu
,
B.
,
2019
, “
In-Plane Crashworthiness of Re-Entrant Hierarchical Honeycombs With Negative Poisson’s Ratio
,”
Compos. Struct.
,
229
, p.
111415
.
29.
Zhang
,
X.
,
Hao
,
H.
,
Tian
,
R.
,
Xue
,
Q.
,
Guan
,
H.
, and
Yang
,
X.
,
2022
, “
Quasi-Static Compression and Dynamic Crushing Behaviors of Novel Hybrid Re-Entrant Auxetic Metamaterials With Enhanced Energy-Absorption
,”
Compos. Struct.
,
288
, p.
115399
.
30.
Xu
,
M.
,
Liu
,
D.
,
Wang
,
P.
,
Zhang
,
Z.
,
Jia
,
H.
,
Lei
,
H.
, and
Fang
,
D.
,
2020
, “
In-Plane Compression Behavior of Hybrid Honeycomb Metastructures: Theoretical and Experimental Studies
,”
Aerosp. Sci. Technol.
,
106
, p.
106081
.
31.
Li
,
C.
,
Shen
,
H.
, and
Wang
,
H.
,
2019
, “
Nonlinear Dynamic Response of Sandwich Beams With Functionally Graded Negative Poisson’s Ratio Honeycomb Core
,”
Eur. Phys. J. Plus
,
134
(
2
).
32.
Jin
,
X.
,
Wang
,
Z.
,
Ning
,
J.
,
Xiao
,
G.
,
Liu
,
E.
, and
Shu
,
X.
,
2016
, “
Dynamic Response of Sandwich Structures With Graded Auxetic Honeycomb Cores Under Blast Loading
,”
Composites, Part B
,
106
, pp.
206
217
.
33.
Huang
,
J.
,
Zhang
,
Q.
,
Scarpa
,
F.
,
Liu
,
Y.
, and
Leng
,
J.
,
2016
, “
Bending and Benchmark of Zero Poisson’s Ratio Cellular Structures
,”
Compos. Struct.
,
152
, pp.
729
736
.
34.
Jiang
,
H.
,
Ziegler
,
H.
,
Zhang
,
Z.
,
Atre
,
S.
, and
Chen
,
Y.
,
2022
, “
Bending Behavior of 3D Printed Mechanically Robust Tubular Lattice Metamaterials
,”
Addit. Manuf.
,
50
, p.
102565
.
35.
Gao
,
Q.
,
Ge
,
C.
,
Zhuang
,
W.
,
Wang
,
L.
, and
Ma
,
Z.
,
2019
, “
Crashworthiness Analysis of Double-Arrowed Auxetic Structure Under Axial Impact Loading
,”
Mater. Des.
,
161
, pp.
22
34
.
36.
Zhao
,
X.
,
Gao
,
Q.
,
Wang
,
L.
,
Yu
,
Q.
, and
Ma
,
Z. D.
,
2018
, “
Dynamic Crushing of Double-Arrowed Auxetic Structure Under Impact Loading
,”
Mater. Des.
,
160
, pp.
527
537
.
37.
Hönig
,
A.
, and
Stronge
,
W. J.
,
2002
, “
In-Plane Dynamic Crushing of Honeycomb. Part I: Crush Band Initiation and Wave Trapping
,”
Int. J. Mech. Sci.
,
44
(
8
), pp.
1665
1696
.
38.
Wang
,
T.
,
Wang
,
L.
,
Ma
,
Z.
, and
Hulbert
,
G. M.
,
2018
, “
Elastic Analysis of Auxetic Cellular Structure Consisting of Re-Entrant Hexagonal Cells Using a Strain-Based Expansion Homogenization Method
,”
Mater. Des.
,
160
, pp.
284
293
.
39.
Meng
,
J.
,
Deng
,
Z.
,
Zhang
,
K.
,
Xu
,
X.
, and
Wen
,
F.
,
2015
, “
Band Gap Analysis of Star-Shaped Honeycombs With Varied Poisson's Ratio
,”
Smart Mater. Struct.
,
24
(
9
), p.
95011
.
40.
Qiao
,
J.
, and
Chen
,
C. Q.
,
2015
, “
Analyses On the In-Plane Impact Resistance of Auxetic Double Arrowhead Honeycombs
,”
ASME J. Appl. Mech.
,
82
(
5
), p.
051007
.
41.
Chen
,
D. H.
,
2011
, “
Bending Deformation of Honeycomb Consisting of Regular Hexagonal Cells
,”
Compos. Struct.
,
93
(
2
), pp.
736
746
.
42.
Abd El-Sayed
,
F.
,
Jones
,
R.
, and
Burgess
,
I. W.
,
1979
, “
Theoretical Approach to the Deformation of Honeycomb Based Composite-Materials
,”
Composites
,
10
(
4
), pp.
209
214
.
43.
Chen
,
D. H.
,
2011
, “
Equivalent Flexural and Torsional Rigidity of Hexagonal Honeycomb
,”
Compos. Struct.
,
93
(
7
), pp.
1910
1917
.
44.
Chen
,
D.
,
2011
, “
Flexural Rigidity of Honeycomb Consisting of Hexagonal Cells
,”
Acta Mech. Sin.
,
27
(
5
), pp.
840
844
.
45.
Azaouzi
,
M.
,
Makradi
,
A.
, and
Belouettar
,
S.
,
2013
, “
Numerical Investigations of the Structural Behavior of a Balloon Expandable Stent Design Using Finite Element Method
,”
Comput. Mater. Sci.
,
72
, pp.
54
61
.
46.
Timoshenko
,
S.
, and
Woinowsky-Krieger
,
S.
,
1959
,
Theory of Plates and Shells
,
McGraw-Hill Book Company
,
New York, Toronto and London
.
47.
Ruan
,
D.
,
Lu
,
G.
,
Wang
,
B.
, and
Yu
,
T. X.
,
2003
, “
In-Plane Dynamic Crushing of Honeycombs—A Finite Element Study
,”
Int. J. Impact Eng.
,
28
(
2
), pp.
161
182
.
48.
Zhou
,
Y.
,
Pan
,
Y.
,
Gao
,
Q.
, and
Sun
,
B.
,
2023
, “
In-Plane Quasi-Static Crushing Behaviors of a Novel Reentrant Combined-Wall Honeycomb
,”
ASME J. Appl. Mech.
,
90
(
5
), p.
051002
.
49.
Zhou
,
Y.
,
Pan
,
Y.
,
Chen
,
L.
,
Gao
,
Q.
, and
Sun
,
B.
,
2022
, “
Mechanical Behaviors of a Novel Auxetic Honeycomb Characterized by Re-Entrant Combined-Wall Hierarchical Substructures
,”
Mater. Res. Express
,
9
(
11
), p.
115802
.
50.
Alderson
,
A.
, and
Alderson
,
K. L.
,
2007
, “
Auxetic Materials
,”
Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng.
,
221
(
4
), pp.
565
575
.
51.
Evans
,
K. E.
, and
Alderson
,
A.
,
2000
, “
Auxetic Materials: Functional Materials and Structures From Lateral Thinking
,”
Adv. Mater.
,
12
(
9
), pp.
617
628
.
52.
Alderson
,
A.
,
Alderson
,
K. L.
,
Chirima
,
G.
,
Ravirala
,
N.
, and
Zied
,
K. M.
,
2010
, “
The In-Plane Linear Elastic Constants and Out-of-Plane Bending of 3-Coordinated Ligament and Cylinder-Ligament Honeycombs
,”
Compos. Sci. Technol.
,
70
(
7
), pp.
1034
1041
.
53.
Huang
,
J.
,
Zhang
,
Q.
,
Scarpa
,
F.
,
Liu
,
Y.
, and
Leng
,
J.
,
2017
, “
Shape Memory Polymer-Based Hybrid Honeycomb Structures With Zero Poisson’s Ratio and Variable Stiffness
,”
Compos. Struct.
,
179
, pp.
437
443
.
54.
Lu
,
Z.
,
Li
,
X.
,
Yang
,
Z.
, and
Xie
,
F.
,
2016
, “
Novel Structure With Negative Poisson’s Ratio and Enhanced Young’s Modulus
,”
Compos. Struct.
,
138
, pp.
243
252
.
You do not currently have access to this content.