Abstract

This study compares the fatigue performance between the AA2050-T852 alloy and AA7050-T7452 alloy traditionally used in aircraft structures. Rotating beam fatigue tests were performed on AA2050-T852 and AA7050-T7452 specimens cut from forged plates with different orientations and at different thickness levels. The samples were tested at 345 MPa (50 ksi), 276 MPa (40 ksi), 207 MPa (30 ksi), and 172 MPa (25 ksi). Scanning Electron Microscope (SEM) images showed mixed-mode failure in all samples. However, the equiaxed dimples were more abundant and finer in the AA2050-T852 alloy. The results indicated that AA2050-T852 alloy demonstrated better fatigue life performance compared to AA7050-T7452 alloy at almost all stresses. No significant difference in fatigue anisotropy was found in one alloy versus the other.

References

1.
Zhu
,
R. H.
,
Liu
,
Q.
,
Li
,
J. F.
,
Chen
,
Y. L.
,
Zhang
,
X. H.
, and
Zheng
,
Z. Q.
,
2018
, “
Flow Curve Correction and Processing Map of 2050 Al–Li Alloy
,”
Trans. Nonferrous Met. Soc. China
,
28
(
3
), pp.
404
414
.
2.
Daniélou
,
A.
,
Ronxin
,
J. P.
,
Nardin
,
C.
, and
Ehrström
,
J. C.
,
2012
, “
Fatigue Resistance of Al-Cu-Li and Comparison With 7XXX Aerospace Alloys
,”
Proceedings of the 13th International Conference on Aluminum Alloys (ICAA13)
,
H.
Weiland
,
A. D.
Rollett
, and
W. A.
Cassada
, eds.,
Pittsburgh, PA
, pp.
511
516
.
3.
Crill
,
M.
,
Chellman
,
D.
,
Balmuth
,
E.
,
Philbrook
,
M.
,
Smith
,
K.
,
Cho
,
A.
,
Niedzinski
,
M.
,
Muzzolini
,
R.
, and
Feiger
,
J.
,
2006
, “
Evaluation of AA 2050-T87 Al-Li Alloy Crack Turning Behaviour
,”
Mater. Sci. Forum
,
519–521
, pp.
1323
1328
.
4.
Lin
,
C.K.
, and
Yang
,
S.T.
,
1998
, “
Corrosion Fatigue Behavior of 7050 Aluminum
,”
Eng Fract Mech
,
59
(
6
), pp.
779
795
.
5.
Goswami
,
R.
,
Lynch
,
S.
,
Knight
,
S.
,
Holroyd
,
N. J. H.
, and
Holt
,
R. N.
,
2013
, “
Evolution of Grain Boundary Precipitates in Al 7075 Upon Aging and Correlation With Stress Corrosion Cracking Behavior
,”
Metall. Mater. Trans. A
,
44
(
3
), pp.
1268
1278
.
6.
Newman
,
J.
,
Shawn
,
J.
,
Ann.Tigeri
,
B.
, and
Ziegler
,
B.
,
2013
, “
Fatigue and Crack Growth in 7050-T7451 Aluminum Alloy Under Constant- and Variable- Amplitude Loading
,”
ASME J. Eng. Gas Turbines Power
,
135
(
2
), p.
022101
.
7.
Brady
,
B. G.
,
2006
, “
Cracking During the Installation of Interference Fit Fasteners and Bucked Rivets in 7050-T7XXX Machined Aluminum Parts
,”
Proceedings of the ASME 2006 International Mechanical Engineering Congress and Exposition
,
Manufacturing Engineering and Textile Engineering. ASME
,
Chicago, IL
,
Nov. 5–10
, pp.
79
85
.
8.
DeWald
,
A.
,
Luong
,
H.
,
Van Dalen
,
J.
, and
Hill
,
M.
, 2006, “
Fatigue Performance of Laser Peened 7050-T7451 Aluminum Alloy
,”
ASME Pressure Vessels and Piping Division Conference; ICPVT-11-93416-4
.
9.
Brown
,
R. D.
, and
Weertman
,
J.
,
1978
, “
Mean Stress Effects on Crack Propagation Rate and Crack Closure in 7050-T76 Aluminum Alloy
,”
Eng. Fract. Mech.
,
10
(
4
), pp.
757
771
.
10.
Masih
,
S.
,
Mashayekhi
,
M.
, and
Torabian
,
N.
,
2015
, “
Identification and Validation of a Low Cycle Fatigue Damage Model for Al 7075-T6 Alloy
,”
ASME J. Eng. Mater. Technol.
,
137
(
1
), p.
011004
.
11.
Srivatsan, T.
S.
,
2002
, “
An Investigation of the Cyclic Fatigue and Fracture Behavior of Aluminum Alloy 7055
,”
Mater. Des.
,
23
(
2
), pp.
141
151
.
12.
Cao
,
J.
,
Fuguo
,
L.
,
Ma
,
X.
, and
Sun
,
Z.
,
2017
, “
Study of Fracture Behavior for Anisotropic 7050-T7451 High-Strength Aluminum Alloy Plate
,”
Int. J. Mech. Sci.
,
128–129
, pp.
445
458
.
13.
Bianchetti
,
C.
,
Levesque
,
M.
, and
Brochu
,
M.
,
2018
, “
Probabilistic Analysis of the Effect of Shot Peening on the High and Low Cycle Fatigue Behaviors of AA 7050-T7451
,”
Int. J. Fatigue
,
111
, pp.
289
298
.
14.
Deng
,
C.
,
Gao
,
R.
,
Gong
,
B.
,
Yin
,
T.
, and
Liu
,
Y.
,
2017
, “
Correlation Between Micro-Mechanical Property and Very High Cycle Fatigue (VHCF) Crack Initiation in Friction Stir Welds of 7050 Aluminum Alloy
,”
Int. J. Fatigue
,
104
, pp.
283
292
.
15.
Kai
,
S.
,
Jin-ling
,
C.
, and
Zhi-min
,
Y.
,
2009
, “
TEM Study on Microstructures and Properties of 7050 Aluminum Alloy During Thermal Exposure
,”
Trans. Nonferrous Met. Soc. China
,
19
(
6
), pp.
1405
1409
.
16.
Lei
,
C.
,
Li
,
H.
, and
Zheng
,
J.
,
2018
, “
Thermal-Mechanical Loading Sequences Related Creep Aging Behaviors of 7050 Aluminum Alloy
,”
J. Alloys Compd.
,
731
, pp.
90
99
.
17.
Luo
,
J.
,
Li, M
.
Q.
, and
Wu
,
B.
,
2011
, “
The Correlation Between Flow Behavior and Microstructural Evolution of 7050 Aluminum Alloy
,”
Mater. Sci. Eng. A
,
530
, pp.
559
564
.
18.
Chen
,
J.
,
Zhang
,
X.
,
Zou
,
L.
,
Yu
,
Y.
, and
Li
,
Q.
,
2016
, “
Effect of Precipitate State on Stress Corrosion Behavior of 7050 Aluminum Alloy
,”
Mater. Charact.
,
114
, pp.
1
8
.
19.
Dixon
,
B.
,
Barter
,
S.
, and
Mazeika
,
R.
,
2018
, “
Quantification of the Fatigue Severity of Porosity in Aluminum Alloy 7050-T7451 Thick Plate
,”
Int. J. Fatigue
,
114
, pp.
217
225
.
20.
Lei
,
C.
,
Yang
,
H.
,
Li
,
H.
,
Shi
,
N.
, and
Zhan L
,
H.
,
2017
, “
Dependences of Microstructures and Properties on Initial Tempers of Creep Aged 7050 Aluminum Alloy
,”
J. Mater. Process. Technol.
,
239
, pp.
125
132
.
21.
Lequeu
,
P.
,
Smith
,
K. P.
, and
Daniélou
,
A.
,
2010
, “
Aluminum-Copper-Lithium Alloy 2050 Developed for Medium to Thick Plate
,”
J. Mater. Eng. Perform.
,
19
(
6
), pp.
841
847
.
22.
Moreto
,
J.
,
Júnior
,
F.
,
Maciel
,
C.
,
Bonazzi
,
L.
,
Júnior
,
J.
,
Ruchert
,
C.
, and
Filho
,
W.
,
2015
, “
Environmentally-Assisted Fatigue Crack Growth in AA7050-T73511 Al Alloy and AA2050-T84 Al-Cu-Li Alloy
,”
Mater. Res.
,
18
(
6
), pp.
1291
1297
.
23.
Zhu
,
R.
,
Liu
,
Q.
,
Li
,
J.
,
Xiang
,
S.
,
Chen
,
Y.
, and
Zhang
,
X.
,
2015
, “
Dynamic Restoration Mechanism and Physically Based Constitutive Model of 2050 Al–Li Alloy During Hot Compression
,”
J. Alloys Compd.
,
650
, pp.
75
85
.
24.
Nizery
,
E.
,
Buffiere
,
J.
,
Proudhon
,
H.
,
Danielou
,
A.
, and
Forest
,
S.
,
2014
, “
Influence of Particles on Short Fatigue Crack Initiation in 2050-T8 and 7050-T74
,”
Mater. Sci. Forum
,
794–796
, pp.
296
301
.
25.
Joyce
,
M. R.
,
Starink
,
M. J.
, and
Sinclair
,
I.
,
2016
, “
Assessment of Mixed Mode Loading on Macroscopic Fatigue Crack Paths in Thick Section Al–Cu–Li Alloy Plate
,”
Mater. Des.
,
93
, pp.
379
387
.
26.
Wanhill
,
R. J. H.
, and
Bray
,
G. H.
,
2014
, “Chapter 12–Fatigue Crack Growth Behavior of Aluminum–Lithium Alloys,”
Aluminum-Lithium Alloys
,
N.
Prasad
,
A.
Gokhale
, and
R. J. H.
Wanhill
, eds.,
Butterworth-Heinemann
,
Oxford, UK
, pp.
381
413
.
27.
Rioja
,
R. J.
, and
Liu
,
J.
,
2012
, “
The Evolution of Al-LI Base Product for Aerospace and Space Applications
,”
Metal. Mater. Trans. A
,
43
(
9
), pp.
3325
3337
.
28.
Sidhar
,
H.
,
Mishra
,
R. S.
,
Reynolds
,
A. P.
, and
Baumann
,
J. A.
,
2017
, “
Impact of Thermal Management on Post Weld Heat Treatment Efficacy in Friction Stir Welded 2050-T3 Alloy
,”
J. Alloys Compd.
,
722
, pp.
330
338
.
29.
Dursun
,
T.
, and
Soutis
,
C.
,
2014
, “
Recent Developments in Advanced Aircraft Aluminum Alloys
,”
Mater. Des.
,
56
, pp.
862
887
.
30.
Cavalcante
,
T. R. F.
,
Pereira
,
G. S.
,
Koga
,
G. Y.
,
Bolfarini
,
C.
,
Bose Filho
,
W. W.
, and
Avila
,
J. A.
,
2022
, “
Fatigue Crack Propagation of Aeronautic AA7050-T7451 and AA2050-T84 Aluminum Alloys in Air and Saline Environments
,”
Int. J. Fatigue
,
154
, p.
106519
.
31.
ASTM E3061 2017 Edition, January 15, 2017, “
Standard Test Method for Analysis of Aluminum and Aluminum Alloys by Inductively Coupled Plasma Atomic Emission Spectrometry
,” (Performance Based Method).
32.
EduPack
,
C. E. S.
,
2016
,
Granta Design Ltd
,
Cambridge UK
, www.grantadesign.com/education
33.
ISO 1143:2010(E)
,
2010
,
Metallic Materials-Fatigue Testing
,
ISO
,
Geneva, Switzerland
.
34.
SAE AMS 4357
,
2016
,
Aluminum Alloy, Die Forgings 3.5Cu – 1.0Li - 0.04Mg – 0.35Mn – 0.45Ag – 0.12Zr (2050-T852) Solution Heat Treated, Cold Worked and Artificially Aged
,
SAE International
,
Warrendale
.
35.
Shen
,
K.
,
Timko
,
M. A.
,
Li
,
Y.
,
Toal
,
R.
,
Santos
,
N.
,
Es-Said
,
S.
,
Thaung
,
S. B.
,
Guevara
,
L. V.
,
Riebe
,
R.
, and
Es-Said
,
O. S.
,
2019
, “
The Effect of Temper, Grain Orientation, and Composition on the Fatigue Properties of Forged Aluminum-Lithium 2195 Alloy
,”
J. Mater. Eng. Perform.
,
28
(
9
), pp.
5625
5638
.
36.
Lee
,
Y.
,
Pan
,
J.
,
Hathaway
,
R.
, and
Barkey
,
M.
,
2004
,
Fatigue Testing and Analysis: Theory and Practice
,
Elsevier Science & Technology
,
Oxford, UK
.
37.
ISO 12107:2012(E)
,
2012
,
Metallic Materials—Fatigue Testing—Statistical Planning and Analysis of Data
,
ISO
,
Geneva, Switzerland
.
38.
Alzubi
,
F.
,
Timko
,
M.
,
Li
,
Y.
,
Toal
,
R.
,
Tovalin
,
K.
, and
Es-Said
,
O. S.
,
2019
, “
Large Versus Small Grain Sizes on Fatigue Life of Aluminum Aircraft Wheels
,”
Defect Diffus. Forum
,
391
, pp.
174
194
. www.scientific.net/DDF.391.174
39.
Pommier
,
S.
,
2003
, “
Variability in Fatigue Lives: An Effect of the Elastic Anisotropy of Grains?
,”
Eur. Struct. Integrity Society
,
31
, pp.
321
340
.
40.
Stephens
,
R. I.
, and
Fuchs
,
H. O.
,
2000
,
Metal Fatigue in Engineering
,
Wiley
,
New York
, Print, Chaps. 4, 6, 9, 13.
41.
Csontos
,
A. A.
, and
Starke
,
E. A.
,
2005
, “
The Effect of Inhomogenous Plastic Deformation on the Ductility and Fracture Behavior of Age Hardenable Aluminum Alloys
,”
Int. J. Plast.
,
21
(
6
), pp.
1097
1118
.
42.
Thompson
,
A. W.
,
1971
, “
The Comparison of Yield and Fatigue Strength Dependence on Grain Size
,”
Scr. Metall.
,
5
(
10
), pp.
859
863
.
You do not currently have access to this content.