Abstract

Spring-back of poly(methyl methacrylate) (PMMA) at large strains, various embossing temperatures, and release temperatures below glass transition is quantified through modified unconfined recovery tests. Cooling, as well as large strains, is shown to reduce the amount of spring-back. Despite reducing the amount of spring-back, these experiments show that there is still a substantial amount present that needs to be accounted for in hot embossing processes. Spring-back is predicted using finite element simulations utilizing a constitutive model for the large strain stress relaxation behavior of PMMA. The model's temperature dependence is modified to account for cooling and focuses on the glass transition temperature region. Spring-back is predicted with this model, capturing the temperature and held strain dependence. Temperature assignment of the sample is found to have the largest effect on simulation accuracy. Interestingly, despite large thermal gradients in the PMMA, a uniform temperature approximation still yields reasonably accurate spring-back predictions. These experiments and simulations fill a substantial gap in knowledge of large strain recovery of PMMA under conditions normally found in hot embossing.

References

1.
Hollick
,
E. J.
,
Spalton
,
D. J.
,
Ursell
,
P. G.
,
Pande
,
M. V.
,
Barman
,
S. A.
,
Boyce
,
J. F.
, and
Tilling
,
K.
,
1999
, “
The Effect of Polymethylmethacrylate, Silicone, and Polyacrylic Intraocular Lenses on Posterior Capsular Opacification 3 Years After Cataract Surgery
,”
Ophthalmology
,
106
(
1
), pp.
49
54
.
2.
Chien
,
R. D.
,
2006
, “
Micromolding of Biochip Devices Designed With Microchannels
,”
Sens. Actuators A Phys.
,
128
(
2
), pp.
238
247
.
3.
Lu
,
C.
,
Cheng
,
M. M.
,
Benatar
,
A.
, and
Lee
,
L. J.
,
2007
, “
Embossing of High-Aspect-Ratio-Microstructures Using Sacrificial Templates and Fast Surface Heating
,”
Polym. Eng. Sci.
,
47
(
6
), pp.
830
840
.
4.
Schneider
,
P.
,
Steitz
,
C.
,
Schafer
,
K. H.
, and
Ziegler
,
C.
,
2009
, “
Hot Embossing of Pyramidal Micro-Structures in PMMA for Cell Culture
,”
Phys. Status Solidi A
,
206
(
3
), pp.
501
507
.
5.
Palm
,
G.
,
Dupaix
,
R. B.
, and
Castro
,
J.
,
2006
, “
Large Strain Mechanical Behavior of Poly(Methyl Methacrylate) (PMMA) Near the Glass Transition Temperature
,”
ASME J. Eng. Mater. Technol.
,
128
(
4
), pp.
559
563
.
6.
Ghatak
,
A.
, and
Dupaix
,
R. B.
,
2010
, “
Material Characterization and Continuum Modeling of Poly(Methyl Methacrylate) (PMMA) Above the Glass Transition
,”
Int. J. Struct. Changes Solids
,
2
(
1
), pp.
53
63
.
7.
Arruda
,
E. M.
,
Boyce
,
M. C.
, and
Jayachandran
,
R.
,
1995
, “
Effects of Strain Rate, Temperature and Thermomechanical Coupling on the Finite Strain Deformation of Glassy Polymers
,”
Mech. Mater.
,
19
(
2/3
), pp.
193
212
.
8.
Ames
,
N. M.
,
Srivastava
,
V.
,
Chester
,
S. A.
, and
Anand
,
L.
,
2009
, “
A Thermo-Mechanically Coupled Theory for Large Deformations of Amorphous Polymers. Part II: Applications
,”
Int. J. Plast.
,
25
(
8
), pp.
1495
1539
.
9.
Hasan
,
O. A.
, and
Boyce
,
M. C.
,
1995
, “
A Constitutive Model for the Nonlinear Viscoelastic Viscoplastic Behavior of Glassy Polymers
,”
Polym. Eng. Sci.
,
35
(
4
), pp.
331
344
.
10.
Dooling
,
P. J.
,
Buckley
,
C. P.
,
Rostami
,
S.
, and
Zahlan
,
N.
,
2002
, “
Hot-Drawing of Poly(Methyl Methacrylate) and Simulation Using a Glass-Rubber Constitutive Model
,”
Polymer
,
43
(
8
), pp.
2451
2465
.
11.
Mathiesen
,
D.
,
Vogtmann
,
D.
, and
Dupaix
,
R. B.
,
2014
, “
Characterization and Constitutive Modeling of Stress-Relaxation Behavior of Poly(Methyl Methacrylate) (PMMA) Across the Glass Transition Temperature
,”
Mech. Mater.
,
71
(
0
), pp.
74
84
.
12.
Greiner
,
R.
, and
Schwarzl
,
F. R.
,
1984
, “
Thermal Contraction and Volume Relaxation of Amorphous Polymers
,”
Rheol. Acta
,
23
(
4
), pp.
378
395
.
13.
Hasan
,
O. A.
, and
Boyce
,
M. C.
,
1993
, “
Energy Storage During Inelastic Deformation of Glassy Polymers
,”
Polymer
,
34
(
24
), pp.
5085
5092
.
14.
Quinson
,
R.
,
Perez
,
J.
,
Rink
,
M.
, and
Pavan
,
A.
,
1996
, “
Components of Non-Elastic Deformation in Amorphous Glassy Polymers
,”
J. Mater. Sci.
,
31
(
16
), pp.
4387
4394
.
15.
Arzhakov
,
M. S.
, and
Arzhakov
,
S. A.
,
1995
, “
A New Approach to the Description of Mechanical Behavior of Polymer Glasses
,”
Int. J. Polym. Mater.
,
29
(
3–4
), pp.
249
259
.
16.
Nguyen
,
T. D.
,
Qi
,
J. H.
,
Castro
,
F.
, and
Long
,
K. N.
,
2008
, “
A Thermoviscoelastic Model for Amorphous Shape Memory Polymers: Incorporating Structural and Stress Relaxation
,”
J. Mech. Phys. Solids
,
56
(
9
), pp.
2792
2814
.
17.
Srivastava
,
V.
,
Chester
,
S. A.
,
Ames
,
N. M.
, and
Anand
,
L.
,
2010
, “
A Thermo-Mechanically-Coupled Large-Deformation Theory for Amorphous Polymers in a Temperature Range Which Spans Their Glass Transition
,”
Int. J. Plast.
,
26
(
8
), pp.
1138
1182
.
18.
Dupaix
,
R. B.
, and
Boyce
,
M. C.
,
2007
, “
Constitutive Modeling of the Finite Strain Behavior of Amorphous Polymers in and Above the Glass Transition
,”
Mech. Mater.
,
39
(
1
), pp.
39
52
.
19.
Dooling
,
P. J.
,
Buckley
,
C. P.
, and
Hinduja
,
S.
,
1998
, “
The Onset of Nonlinear Viscoelasticity in Multiaxial Creep of Glassy Polymers: A Constitutive Model and Its Application to PMMA
,”
Polym. Eng. Sci.
,
38
(
6
), pp.
892
904
.
20.
Anand
,
L.
, and
Ames
,
N. M.
,
2006
, “
On Modeling the Micro-Indentation Response of an Amorphous Polymer
,”
Int. J. Plast.
,
22
(
6
), pp.
1123
1170
.
21.
Boyce
,
M. C.
,
Parks
,
D. M.
, and
Argon
,
A. S.
,
1988
, “
Large Inelastic Deformation of Glassy Polymers. Part I: Rate Dependent Constitutive Model
,”
Mech. Mater.
,
7
(
1
), pp.
15
33
.
22.
Arruda
,
E. M.
, and
Boyce
,
M. C.
,
1993
, “
A Three-Dimensional Constitutive Model for the Large Stretch Behavior of Rubber Elastic Materials
,”
J. Mech. Phys. Solids
,
41
(
2
), pp.
389
412
.
23.
Arruda
,
E. M.
, and
Boyce
,
M. C.
,
1993
, “
Evolution of Plastic Anisotropy in Amorphous Polymers During Finite Straining
,”
Int. J. Plast.
,
9
(
6
), pp.
697
720
.
24.
Graham
,
R. S.
,
Likhtman
,
A. E.
,
McLeish
,
T. C. B.
, and
Milner
,
S. T.
,
2003
, “
Microscopic Theory of Linear, Entangled Polymer Chains Under Rapid Deformation Including Chain Stretch and Convective Constraint Release
,”
J. Rheol.
,
47
(
5
), pp.
1171
1200
.
25.
Likhtman
,
A. E.
, and
Graham
,
R. S.
,
2003
, “
Simple Constitutive Equation for Linear Polymer Melts Derived From Molecular Theory: Rolie-Poly Equation
,”
J. Nonnewton Fluid Mech.
,
114
(
1
), pp.
1
12
.
26.
De Focatiis
,
D. S. A.
,
Buckley
,
C. P.
, and
Embery
,
J.
,
2010
, “
Large Deformations in Oriented Polymer Glasses: Experimental Study and a New Glass-Melt Constitutive Model
,”
J. Polym. Sci. Part B Polym. Phys.
,
48
(
13
), pp.
1449
1463
.
27.
Dupaix
,
R. B.
, and
Cash
,
W.
,
2009
, “
Finite Element Modeling of Polymer Hot Embossing Using a Glass-Rubber Finite Strain Constitutive Model
,”
Polym. Eng. Sci.
,
49
(
3
), pp.
531
543
.
You do not currently have access to this content.