A polymer matrix system of thermoset fiber-reinforced composites helps protect its high modulus and strength fibers from an adverse environment and transfers the load to the reinforced fibers. However, when subjected to a high temperature that exceeds its postcuring-stage temperature, the polymeric matrix will decompose or be charred. To address this issue, various techniques have been developed to improve the flame-retardant property of the polymeric matrix. One of these techniques is to either delay ignition or release moisture to extinguish the flame by combining other chemicals or reactively modifying the epoxy resin. Graphene oxide (GO) nanofilms deposited on top of composite surfaces were compared with the test results of nanocomposite coatings of GO and nanoclay particles on composite surfaces. GO thin film applied to the surface of fiber-reinforced composites acts as a heat shield to quickly dissipate heat and eliminate local heat formation. Thermal tests, such as thermogravimetric analysis (TGA), 45-deg burn tests, vertical burn tests, and surface paint adhesion tests were accomplished. Average burn lengths and the average burn areas were reduced with nanoparticle inclusion to the nanoclay samples and graphene samples. TGA analysis indicated that the nanoclay inclusion samples, as well as the graphene inclusion samples, have a higher percentage weight loss than that of the base sample. GO inclusion samples were less affected than nanoclay inclusion samples during the vertical as well as 45-deg burn tests. In addition, there were no signs of damage to the GO thin film that was secondarily bonded to the surface of composite panels for the burn test.

References

1.
Kumar
,
S. S. A.
,
Uddin
,
M. N.
,
Rahman
,
M. M.
, and
Asmatulu
,
R.
,
2018
, “
Introducing Graphene Thin Films Into Carbon Fiber Composite Structures for Lightning Strike Protection
,”
Polym. Compos.
,
40
, pp.
E517
E525
.
2.
Strong
,
A. B.
,
2008
,
Fundamentals of Composites Manufacturing
, 2nd ed.,
Society of Manufacturing Engineers
,
Dearborn, MI
, Chaps. 2–5.
3.
Laoutid
,
F.
,
Bonnaud
,
L.
,
Alexandre
,
M.
,
Lopez-Cuesta
,
J. M.
, and
Dubois
,
P.
,
2009
, “
New Prospects in Flame Retardant Polymer Materials: From Fundamentals to Nanocomposites
,”
Mater. Sci. Eng. R
,
63
, pp.
100
125
.
4.
Liu
,
W.
,
Varley
,
R. J.
, and
Simon
,
G. P.
,
2004
, “
A Phosphorus-Containing Diamine for Flame-Retardant, High-Functionality Epoxy Resins. I. Synthesis, Reactivity, and Thermal Degradation Properties
,”
J. Appl. Polym. Sci.
,
92
, pp.
2093
2100
.
5.
Chiang
,
W. Y.
, and
Hu
,
C. H.
,
2001
, “
Approaches of Interfacial Modification for Flame Retardant Polymeric Materials
,”
Compos. Part A
,
32
, pp.
517
524
.
6.
Ghazinezami
,
A.
,
Khan
,
W. S.
,
Jabbarnia
,
A.
, and
Asmatulu
,
R.
,
2017
, “
Impacts of Nanoscale Inclusions on Fire Retardancy, Thermal Stability, and Mechanical Properties of Polymeric PVC Nanocomposites
,”
J. Therm. Eng.
,
3
, pp.
1308
1318
.
7.
Ahmad
,
Z.
,
Ansell
,
M. P.
, and
Smedley
,
D.
,
2011
, “
Epoxy Adhesives Modified With Nano- and Microparticles for In Situ Timber Bonding: Fracture Toughness Characteristics
,”
ASME J. Eng. Mater. Technol.
,
133
(
3
),
031006
.
8.
Zhang
,
B.
,
Asmatulu
,
R.
,
Le
,
L. N.
,
Kumar
,
S. S. A.
, and
Soltani
,
S. A.
,
2014
, “
Mechanical and Thermal Properties of Hierarchical Composites Enhanced by Pristine Graphene and Graphene Oxide Nanoinclusions
,”
J. Appl. Polym. Sci.
,
131
.
9.
Umer
,
R.
,
Li
,
Y.
,
Dong
,
Y.
,
Haroosh
,
H. J.
, and
Liao
,
K.
,
2015
, “
The Effect of Graphene Oxide (GO) Nanoparticles on the Processing of Epoxy/Glass Fiber Composites Using Resin Infusion
,”
Int. J. Adv. Manuf. Technol.
,
81
(
9–12
), pp.
2183
2192
.
10.
Meenakshi
,
K. S.
,
Sudhan
,
E. P. J.
, and
Kumar
,
S. A.
,
2012
, “
Development and Characterization of New Phosphorus Based Flame Retardant Tetraglycidyl Epoxy Nanocomposites for Aerospace Application
,”
Bull. Mater. Sci.
,
35
, pp.
129
136
.
11.
Ghosh
,
A.
,
2011
, “
Nano-Clay Particle as Textile Coating
,”
Int. J. Eng. Technol. IJET-IJENS
,
11
(
5
), pp.
34
36
.
12.
Olad
,
A.
,
2011
, “Polymer/Clay Nanocomposites,”
Advances in Diverse Industrial Applications of Nanocomposites
,
IntechOpen
,
London, UK
,
Chap. 7
.
13.
Lao
,
S. C.
,
Yong
,
W.
,
Nguyen
,
K.
,
Moon
,
T. J.
,
Koo
,
J. H.
,
Pilato
,
L.
, and
Wissler
,
G.
,
2010
, “
Flame-Retardant Polyamide 11 and 12 Nanocomposites: Processing, Morphology, and Mechanical Properties
,”
J. Compos. Mater.
,
44
, pp.
2933
2951
.
14.
Lao
,
S.
,
Koo
,
J.
,
Moon
,
T.
,
Londa
,
M.
,
Ibeh
,
C.
,
Wissler
,
G.
, and
Pilato
,
L.
,
2011
, “
Flame-Retardant Polyamide 11 Nanocomposites: Further Thermal and Flammability Studies
,”
J. Fire Sci.
,
29
, pp.
479
498
.
15.
Koo
,
J. H.
,
Miller
,
M. J.
,
Weispfenning
,
J.
, and
Blackmon
,
C.
,
2011
, “
Silicone Polymer Composites for Thermal Protection System: Fiber Reinforcements and Microstructures
,”
J. Compos. Mater.
,
45
(
13
), pp.
1363
1380
.
16.
Tang
,
Y.
,
Zhuge
,
J.
,
Lawrence
,
J.
,
Mckee
,
J.
,
Gou
,
J.
,
Ibeh
,
C.
, and
Hu
,
Y.
,
2011
, “
Flame Retardancy of Carbon Nanofibre/Intumescent Hybrid Paper Based Fibre Reinforced Polymer Composites
,”
Polym. Degrad. Stab.
,
96
, pp.
760
770
.
17.
Kiliaris
,
P.
, and
Papaspyrides
,
C. D.
,
2010
, “
Polymer/Layered Silicate (Clay) Nanocomposites: An Overview of Flame Retardancy
,”
Prog. Polym. Sci.
,
35
, pp.
902
958
.
18.
Song
,
L.
,
Hu
,
Y.
,
Tang
,
Y.
,
Zhang
,
R.
,
Chen
,
Z.
, and
Fan
,
W.
,
2005
, “
Study on the Properties of Flame Retardant Polyurethane/Organoclay Nanocomposite
,”
Polym. Degrad. Stab.
,
87
, pp.
111
116
.
19.
Zhang
,
B.
,
Soltani
,
S. A.
,
Le
,
L. N.
, and
Asmatulu
,
R.
,
2017
, “
Fabrication and Assessment of a Thin Flexible Surface Coating made of Pristine Graphene for Lightning Strike Protection
,”
Mater. Sci. Eng. B
,
216
, pp.
31
40
.
20.
Uddin
,
M. N.
,
Huang
,
Z. D.
,
Mai
,
Y. W.
, and
Kim
,
J. K.
,
2014
, “
Tensile and Tearing Fracture Properties of Graphene Oxide Papers Intercalated With Carbon Nanotubes
,”
Carbon
,
77
, pp.
481
491
.
21.
Wang
,
L.
,
He
,
X.
, and
Wilkie
,
C. A.
,
2010
, “
The Utility of Nanocomposites in Fire Retardancy
,”
Materials
,
3
, pp.
4580
4606
.
22.
Wang
,
Z.
,
Tang
,
X. Z.
,
Yu
,
Z. Z.
,
Guo
,
P.
,
Song
,
H. H.
, and
Duc
,
X. S.
,
2011
, “
Dispersion of Graphene Oxide and its Flame Retardancy Effect on Epoxy Nanocomposites
,”
Chin. J. Polym. Sci. (Engl. Ed.)
,
29
, pp.
368
376
.
23.
Guo
,
Y.
,
Bao
,
C.
,
Song
,
L.
,
Yuan
,
B.
, and
Hu
,
Y.
,
2011
, “
In Situ Polymerization of Graphene, Graphite Oxide, and Functionalized Graphite Oxide into Epoxy Resin and Comparison Study of On-the-Flame Behavior
,”
Ind. Eng. Chem. Res.
,
50
, pp.
7772
7783
.
24.
Bhuyan
,
M. S. A.
,
Uddin
,
M. N.
,
Islam
,
M. M.
,
Bipasha
,
F. A.
, and
Hossain
,
S. S.
,
2016
, “
Synthesis of Graphene
,”
Int. Nano Lett.
,
6
, pp.
65
83
.
25.
Federal Aviation Administration
,
2013
, “
Code of Federal Regulations
,” http://www.faa.gov/.
26.
Cengel
,
Y. A.
,
2007
,
Heat and Mass Transfer: A Practical Approach
,
McGraw-Hill
,
New York, NY
.
27.
Midttomme
,
K.
,
Aargaard
,
P.
, and
Roaldset
,
E.
,
1998
, “
Thermal Conductivity of Selected Claystones and Mudstones from England
,”
Clay Miner.
33
(
1
), pp.
131
145
. https://doi.org/10.1180/000985598545327
28.
Qin
,
H.
,
Zhang
,
S.
,
Zhao
,
C.
,
Feng
,
M.
,
Yang
,
M.
,
Shu
,
Z.
, and
Yang
,
S.
,
2004
, “
Thermal Stability and Flammability of Polypropylene/Montmorillonite Composites
,”
Polym. Degrad. Stab.
,
85
, pp.
807
813
.
29.
Balandin
,
A. A.
,
Ghosh
,
S.
,
Bao
,
W.
,
Calizo
,
I.
,
Teweldebrhan
,
D.
,
Miao
,
F.
, and
Lau
,
C. N.
,
2008
, “
Superior Thermal Conductivity of Single-Layer Graphene
,”
Nano Lett.
,
8
, pp.
902
907
.
30.
Panwar
,
R.
, and
Lee
,
J. R.
,
2017
, “
Progress in Frequency Selective Surface-Based Smart Electromagnetic Structures: A Critical Review
,”
Aerosp. Sci. Technol.
,
66
, pp.
216
234
.
31.
Le
,
L. N.
,
Zhang
,
B.
, and
Asmatulu
,
R.
,
2014
, “
Graphene Thin Films on Fiber-Reinforced Epoxy Composites for Improved Fire Retardancy
,”
ASME International Mechanical Engineering Congress and Exposition
,
Montreal, Canada
,
Nov. 14–20
.
You do not currently have access to this content.