The deformation behavior of as-quenched 2024 Al–Cu–Mg alloy has been experimentally studied. The experiments are designed to cool specimens to the desired temperature with a constant cooling rate, i.e., 5 K/s. Isothermal tensile tests are performed over a range of 573–723 K temperature and (0.01, 0.1, and 1 s−1) strain rates to find out the flow stresses and microstructures after deformation. Due to the nonuniform deformation mechanisms (solid solution versus solid solution and precipitation), two types of Arrhenius model are established for the temperature range of 573–673 K and 673–723 K, respectively. For temperature between 573 and 673 K, the activation energy is dependent on temperature and strain rate, and the value of activation energy decreases with the increases of temperature and strain rate. Compared with the ideal variation trend with no consideration of precipitation, the largest difference of activation energy is found at the temperature of 623 K which is the nose temperature of 2024 alloy.

References

1.
Tolga
,
D.
, and
Soutis
,
C.
,
2014
, “
Recent Developments in Advanced Aircraft Aluminium Alloys
,”
Mater. Des.
,
56
, pp.
862
871
.
2.
Nikhin
,
M.
, and
Mudawar
,
I.
,
2010
, “
Analytical and Computational Methodology for Modeling Spray Quenching of Solid Alloy Cylinders
,”
Int. J. Heat Mass Transfer
,
53
(
25–26
), pp.
5871
5883
.
3.
Xiao
,
B. W.
,
Wang
,
Q. G.
,
Jadhav
,
P.
, and
Li
,
K. Y.
,
2010
, “
An Experimental Study of Heat Transfer in Aluminum Castings During Water Quenching
,”
J. Mater. Process. Technol.
,
210
(
14
), pp.
2023
2028
.
4.
Chobaut
,
N.
,
Carron
,
D.
,
Arsene
,
S.
,
Schloth
,
P.
, and
Drezet
,
J. M.
,
2015
, “
Quench Induced Residual Stress Prediction in Heat Treatable 7xxx Aluminium Alloy Thick Plates Using Gleeble Interrupted Quench Tests
,”
J. Mater. Process. Technol.
,
222
, pp.
373
380
.
5.
Chobaut
,
N.
,
2015
, “
Measurements and Modelling of Residual Stresses During Quenching of Thick Heat Treatable Aluminium Components in Relation to Their Precipitation State
,”
Ph.D. thesis
, Swiss federal Institute of Technology, Lausanne, Switzerland.https://infoscience.epfl.ch/record/205768?ln=en
6.
Robinson
,
J. S.
,
Tanner
,
D. A.
, and
Truman
,
C. E.
,
2014
, “
50th Anniversary Article: The Origin and Management of Residual Stress in Heat-Treatable Aluminum Alloys
,”
Strain
,
50
(
3
), pp.
185
207
.
7.
Estey
,
C. M.
,
Cockcroft
,
S. L.
,
Maijer
,
D. M.
, and
Hermesmann
,
C.
,
2004
, “
Constitutive Behaviour of A356 During the Quenching Operation
,”
Mater. Sci. Eng., A
,
383
(
2
), pp.
245
251
.
8.
Yang
,
X. W.
,
Lai
,
Z. H.
,
Zhu
,
J. C.
,
Liu
,
Y.
, and
He
,
D.
,
2012
, “
Hot Compressive Deformation Behavior of the As-Quenched A357 Aluminum Alloy
,”
Mater. Sci. Eng., B
,
177
(
19
), pp.
1721
1725
.
9.
Yang
,
X. W.
,
Zhu
,
J. C.
,
Nong
,
Z. S.
,
Ye
,
M.
,
Lai
,
Z. H.
, and
Liu
,
Y.
,
2013
, “
Constitutive Behavior of As-Quenched Al–Cu–Mn Alloy
,”
Mod. Phys. Lett. B
,
27
(
19
), pp.
2252
2279
.
10.
Chobaut
,
N.
,
Carron
,
D.
, and
Drezet
,
J. M.
,
2016
, “
Characterisation of Precipitation Upon Cooling of an AA2618 Al–Cu–Mg Alloy
,”
J. Alloy Compd.
,
654
, pp.
56
62
.
11.
Wang
,
W. G.
,
Wang
,
G.
,
Hu
,
Y. S.
,
Guo
,
G. N.
,
Zhou
,
T. T.
, and
Rong
,
Y. M.
,
2016
, “
Temperature-Dependent Constitutive Behavior With Consideration of Microstructure Evolution for As-Quenched Al–Cu–Mn Alloy
,”
Mater. Sci. Eng. A
,
678
, pp.
85
92
.
12.
Yang
,
B.
,
Milkereit
,
B.
,
Zhang
,
Y.
,
Rometsch
,
P. A.
,
Kessler
,
O.
, and
Schick
,
C.
,
2016
, “
Continuous Cooling Precipitation Diagram of Aluminium Alloy AA7150 Based on a New Fast Scanning Calorimetry and Interrupted Quenching Method
,”
Mater. Charact.
,
120
, pp.
30
37
.
13.
Milkereit
,
B.
,
Wanderka
,
N.
,
Schick
,
C.
, and
Kessler
,
O.
,
2012
, “
Continuous Cooling Precipitation Diagrams of Al–Mg–Si Alloys
,”
Mater. Sci. Eng. A
,
550
, pp.
87
96
.
14.
Zhang
,
Y.
,
Milkereit
,
B.
,
Kessler
,
O.
,
Schick
,
C.
, and
Rometsch
,
P. A.
,
2014
, “
Development of Continuous Cooling Precipitation Diagrams for Aluminium Alloys AA7150 and AA7020
,”
J. Alloy Compd.
,
584
, pp.
581
589
.
15.
Schloth
,
P.
,
2015
, “
Precipitation in the High Strength AA7449 Aluminum Alloy: Implications on Internal Stresses on Different Length Scales
,”
Ph.D. thesis
, Swiss federal Institute of Technology in Lausanne, Switzerland.https://infoscience.epfl.ch/record/208831?ln=en
16.
Vorster
,
W. J. J.
, and
Korsunsky
,
A. M.
,
2009
, “
Analysis of Residual Strain and Stress States Due to Heat Treatment and Thermal Processing
,”
J. Strain Anal. Eng.
,
44
(
1
), pp.
71
91
.
17.
Lin
,
Y. C.
, and
Chen
,
X. M.
,
2011
, “
A Critical Review of Experimental Results and Constitutive Descriptions for Metals and Alloys in Hot Working
,”
Mater. Des.
,
32
(
4
), pp.
1733
1759
.
18.
Fribourg
,
G.
,
2009
, “
Precipitation and Plasticity Couplings in a 7xxx Aluminum Alloy: Application to Thermo-Mechanical Treatments for Distortion Correction of Aerospace Components
,” Ph.D. thesis, Institute National Polytechnique de Grenoble, France.
19.
Afrin
,
N.
,
Chen
,
D. L.
,
Cao
,
X.
, and
Jahazi
,
M.
,
2007
, “
Strain Hardening Behavior of a Friction Stir Welded Magnesium Alloy
,”
Scr. Mater.
,
57
(
11
), pp.
1004
1007
.
20.
Chowdhury
,
S. M.
,
Chen
,
D. L.
,
Bhole
,
S. D.
,
Cao
,
X.
,
Powidajko
,
E.
,
Weckman
,
D. C.
, and
Zhou
,
Y.
,
2010
, “
Tensile Properties and Strain-Hardening Behavior of Double-Sided Arc Welded and Friction Stir Welded AZ31B Magnesium Alloy
,”
Mater. Sci. Eng., A
,
527
(
12
), pp.
2951
2961
.
21.
Tahreen
,
N.
,
Chen
,
D. L.
,
Nouri
,
M.
, and
Li
,
D. Y.
,
2014
, “
Effects of Aluminum Content and Strain Rate on Strain Hardening Behavior of Cast Magnesium Alloys During Compression
,”
Mater. Sci. Eng. A
,
594
, pp.
235
245
.
22.
Zener
,
C.
, and
Hollomon
,
H.
,
1944
, “
Effect of Strain Rate Upon Plastic Flow of Steel
,”
J. Appl. Phys.
,
15
(
1
), pp.
22
32
.
23.
Jonas
,
J. J.
,
Sellars
,
C. M.
, and
Tegart
,
W. J. M.
,
1969
, “
Strength and Structure Under Hot-Working Conditions
,”
Metall. Rev.
,
14
(
1
), pp.
1
24
.
24.
Shi
,
H.
,
McLaren
,
A. J.
,
Sellars
,
C. M.
,
Shahani
,
R.
, and
Bolingbroke
,
R.
,
1997
, “
Constitutive Equations for High Temperature Flow Stress of Aluminium Alloys
,”
Mater. Sci. Technol.
,
13
(
3
), pp.
210
216
.
25.
Mcqueen
,
H. J.
, and
Ryan
,
N. D.
,
2002
, “
Constitutive Analysis in Hot Working
,”
Mater. Sci. Eng., A
,
322
(
1–2
), pp.
43
63
.
26.
Shi
,
C.
,
Mao
,
W.
, and
Chen
,
X. G.
,
2013
, “
Evolution of Activation Energy During Hot Deformation of AA7150 Aluminum Alloy
,”
Mater. Sci. Eng., A
,
571
, pp.
83
91
.
27.
Tiryakioglu
,
M.
, and
Shuey
,
R. T.
,
2010
, “
Modeling Quench Sensitivity of Aluminum Alloys for Multiple TEM PERS and Properties: Application to AA2024
,”
Metall. Mater. Trans. A
,
41
(
11
), pp.
2984
2991
.
28.
Jin
,
N. P.
,
Zhang
,
H.
,
Han
,
Y.
,
Wu
,
W. X.
, and
Chen
,
J. H.
,
2009
, “
Huang: Hot Deformation Behavior of 7150 Aluminum Alloy During Compression at Elevated Temperature
,”
Mater. Charact.
,
60
(
6
), pp.
530
536
.
29.
Hull
,
D.
, and
Bacon
,
D. J.
,
2011
,
Introduction to Dislocations
, 5th ed.,
Elsevier
, Amsterdam, The Netherlands, pp.
205
210
.
30.
Wang
,
S.
,
Hou
,
L. G.
,
Luo
,
J. R.
,
Zhang
,
J. S.
, and
Zhuang
,
L. Z.
,
2015
, “
Characterization of Hot Workability in AA 7050 Aluminum Alloy Using Activation Energy and 3-D Processing Map
,”
J. Mater. Process. Technol.
,
225
, pp.
110
121
.
31.
Parel
,
T. S.
,
Wang
,
S. C.
, and
Starink
,
M. J.
,
2010
, “
Hardening of an Al–Cu–Mg Alloy Containing Types I and II S Phase Precipitates
,”
Mater. Des.
,
31
, pp.
S2
S5
.
32.
Deschamps
,
A.
, and
Brechet
,
Y.
,
1999
, “
Influence of Pre-Deformation and Aging of an Al–Zn–Mg Alloy—II: Modeling of Precipitation Kinetics and Yield Stress
,”
Acta Metall.
,
1
(
1
), pp.
293
305
.
33.
Leyson
,
G.
,
Hector
,
L.
, Jr.
, and
Curtin
,
W.
,
2012
, “
Solute Strengthening From First Principles and Application to Aluminum Alloys
,”
Acta Metall.
,
60
(
9
), pp.
3873
3884
.
34.
Vegter
,
H.
,
Mulder
,
H.
,
Liempt
,
P. V.
, and
Heijne
,
J.
,
2016
, “
Work Hardening Descriptions in Simulation of Sheet Metal Forming Tailored to Material Type and Processing
,”
Int. J. Plast.
,
80
, pp.
204
221
.
35.
Schloth
,
P.
,
Menzel
,
A.
,
Fife
,
J. L.
,
Wagner
,
J. N.
,
Swygenhoven
,
H. V.
, and
Drezet
,
J. M.
,
2015
, “
Early Cluster Formation During Rapid Cooling of an Al–Cu–Mg Alloy: In Situ Small-Angle X-Ray Scattering
,”
Scr. Mater.
,
108
, pp.
56
59
.
You do not currently have access to this content.