Next-generation, reusable hypersonic aircraft will be subjected to extreme environments that produce complex fatigue loads at high temperatures, reminiscent of the life-limiting thermal and mechanical loads present in large gas-powered land-based turbines. In both of these applications, there is a need for greater fidelity in the constitutive material models employed in finite element simulations, resulting in the transition to nonlinear formulations. One such formulation is the nonlinear kinematic hardening (NLKH) model, which is a plasticity model quickly gaining popularity in the industrial sector, and can be found in commercial finite element software. The drawback to using models like the NLKH model is that the parameterization can be difficult, and the numerical fitting techniques commonly used for such tasks may result in constants devoid of physical meaning. This study presents a simple method to derive these constants by extrapolation of a reduced-order model, where the cyclic Ramberg–Osgood (CRO) formulation is used to obtain the parameters of a three-part NLKH model. This fitting scheme is used with basic literature-based data to fully characterize a constitutive model for Inconel 617 at temperatures between 20 °C and 1000 °C. This model is validated for low-cycle fatigue (LCF), creep-fatigue (CF), thermomechanical fatigue (TMF), and combined thermomechanical-high-cycle fatigue (HCF) using a mix of literature data and original data produced at the Air Force Research Laboratory (AFRL).

References

1.
Maybury
,
M. T.
,
2013
, “
Global Horizons Final Report: United States Air Force Global Science and Technology Vision
,” U.S. Air Force, Washington, DC, Report No. AF/ST TR 13-01.
2.
Rao
,
K. B. S.
,
Meurer
,
H. P.
, and
Schuster
,
H.
,
1988
, “
Creep-Fatigue Interaction of Inconel 617 at 950 °C in Simulated Nuclear Reactor Helium
,”
Mater. Sci. Eng.: A
,
104
, pp.
37
51
.
3.
Rao
,
K. B. S.
,
Schiffers
,
H.
,
Schuster
,
H.
, and
Nickel
,
H.
,
1988
, “
Influence of Time and Temperature Dependent Processes on Strain Controlling Low Cycle Fatigue Behavior of Alloy 617
,”
Metall. Trans. A
,
19
(
2
), pp.
359
371
.
4.
Burke
,
M. A.
, and
Beck
,
C. G.
,
1984
, “
The High Temperature Low Cycle Fatigue Behavior of the Nickel Base Alloy IN-617
,”
Metall. Trans. A
,
15
(
4
), pp.
5661
5670
.
5.
Cabet
,
C.
,
Carroll
,
L.
, and
Wright
,
R.
,
2013
, “
Low Cycle Fatigue and Creep-Fatigue Behavior of Alloy 617 at High Temperature
,”
ASME J. Pressure Vessel Technol.
,
135
(
6
), p.
061401
.
6.
Carroll
,
L. J.
,
Cabet
,
C.
,
Carroll
,
M. C.
, and
Wright
,
R. N.
,
2013
, “
The Development of Microstructural Damage During High Temperature Creep–Fatigue of a Nickel Alloy
,”
Int. J. Fatigue
,
47
, pp.
115
125
.
7.
Lu
,
Z. K.
, and
Weng
,
G. J.
,
1996
, “
A Simple Unified Theory for the Cyclic Deformation of Metals at High Temperature
,”
Acta Mech.
,
118
(
1–4
), pp.
135
149
.
8.
Pritchard
,
P. G.
,
Carroll
,
L.
, and
Hassan
,
T.
,
2013
, “
Constitutive Modeling of High Temperature Uniaxial Creep-Fatigue and Creep-Ratcheting Responses of Alloy 617
,”
ASME
Paper No. PVP2013-97251.
9.
Tungga
,
D. R.
,
Jin
,
K. S.
,
Gon
,
K. W.
, and
Seon
,
K. E.
,
2016
, “
Understanding Low Cycle Fatigue Behavior of Alloy 617 Base Metal and Weldments at 900 °C
,”
Metals
,
6
(
8
), pp.
178
191
.
10.
Schwertel
,
J.
,
Merckling
,
G.
,
Hornberger
,
K.
,
Schinke
,
B.
, and
Munz
,
D.
,
1991
, “
Experimental Investigations on the Ni-Base Superalloy IN617 and Their Theoretical Description
,”
Winter Annual Meeting of the American Society of Mechanical Engineers,
Atlanta, GA, Dec. 1–6, pp.
285
295.
11.
Smith
,
G. D.
, and
Yates
,
D. H.
,
1991
, “
Optimization of the Fatigue Properties of Inconel Alloy
617,”
ASME
Paper No. 91-GT-161.
12.
Strizak
,
J. P.
,
Brinkman
,
C. R.
,
Booker
,
M. K.
, and
Rittenhouse
,
P. L.
,
1982
, “
The Influence of Temperature, Environment, and Thermal Aging on the Continuous Cycle Fatigue Behavior of Hastelloy X and Inconel 617
,” Oak Ridge National Laboratory, Oak Ridge, TN, Report No.
ORNL/TM-8130
.http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=941EA39CAE186D1072AFF5004A17522E?doi=10.1.1.608.5681&rep=rep1&type=pdf
13.
Wright
,
J. K.
,
Carroll
,
L. J.
,
Simpson
,
J. A.
, and
Wright
,
R. N.
,
2013
, “
Low Cycle Fatigue of Alloy 617 at 850 °C and 950 °C
,”
ASME J. Eng. Mater. Technol.
,
135
(
3
), p.
031005
.
14.
Benz
,
J. K.
,
Carroll
,
L. J.
,
Wright
,
J. K.
,
Wright
,
R. N.
, and
Lillo
,
T. M.
,
2014
, “
Threshold Stress Creep Behavior of Alloy 617 at Intermediate Temperatures
,”
Metall. Mater. Trans. A
,
45
(
7
), pp.
3010
3022
.
15.
Hasan
,
M.
,
Pal
,
J.
,
Roy
,
A.
, and
Chaterjee
,
S.
,
2009
, “
Time and Temperature-Dependent Deformation of Alloy 617
,”
TMS 2009 138th Annual Meeting and Exhibition: Materials Processing and Properties,
Pennsylvania, PA, Feb. 15, pp.
281
288
.
16.
Kim
,
W.-G.
,
Park
,
J.-Y.
,
Ekaputra
,
I. M. W.
,
Kim
,
S.-J.
,
Kim
,
M.-H.
, and
Kim
,
Y.-W.
,
2015
, “
Creep Deformation and Rupture Behavior of Alloy 617
,”
Eng. Failure Anal.
,
58
, pp.
441
451
.
17.
Special Metals,
2015
, “
Inconel Alloy 617
,” Special Metals Corporation, Huntington, WV.
18.
Osthoff
,
W.
,
Schuster
,
H.
,
Ennis
,
P. J.
, and
Nickel
,
H.
,
1984
, “
Creep and Relaxation Behavior of Inconel-617
,”
Nucl. Technol.
,
66
(
2
), pp.
296
307
.
19.
Stewart
,
C. M.
, and
Gordon
,
A. P.
,
2009
, “
Modeling the Temperature Dependence of Tertiary Creep Damage of a Ni-Based Alloy
,”
ASME J. Pressure Vessel Technol.
,
131
(
5
), p.
051406
.
20.
Quayyum
,
S.
,
Pritchard
,
P. G.
, and
Hassan
,
T.
,
2014
, “
High Temperature Constitutive Model Development for Alloy 617
,”
ASME
Paper No. ETAM2014-1031.
21.
Guth
,
S.
, and
Lang
,
K.-H.
,
2017
, “
An Approach to Lifetime Prediction for a Wrought Ni-Base Alloy Under Thermo-Mechanical Fatigue With Various Phase Angles Between Temperature and Mechanical Strain
,”
Int. J. Fatigue
,
99
, pp.
286
294
.
22.
Bouchenot
,
T.
,
Cole
,
C.
, and
Gordon
,
A. P.
,
2018
, “
A Reduced-Order Constitutive Modeling Approach for a Material Subjected to Combined Cycle Fatigue
,”
AIAA
Paper No. 2018-0648.
23.
Gordon
,
A. P.
,
Khan
,
S.
, and
Nicholson
,
D. W.
,
2007
, “
Temperature and Orientation Dependence of Creep Damage of Two Ni-Base Superalloys
,”
ASME
Paper No. CREEP2007-26019.
24.
Gordon
,
A.
,
Judd
,
E.
,
Bouchenot
,
T. S.
, and
Penmetsa
,
R. C.
,
2015
, “
A Microstructurally-Informed, Continuum-Level Life Prediction Model for Thermo-Acousto-Mechanically Fatigued Ti-6242S and IN617
,”
AIAA
Paper No. 2015-1580.
25.
ASTM
,
2013
, “
Standard Test Method for Creep-Fatigue Testing
,” ASTM International, West Conshohocken, PA, Standard No.
E2714
.
26.
van den Beukel
,
A.
,
1975
, “
Theory of the Effect of Dynamic Strain Aging on Mechanical Properties
,”
Phys. Status Solidi
,
30
(
1
), pp.
197
206
.
27.
Bouchenot
,
T.
,
Felemban
,
B.
,
Mejia
,
C.
, and
Gordon
,
A. P.
,
2016
, “
Development of Non-Interaction Material Models With Cyclic Hardening
,”
ASME J. Eng. Mater. Technol.
,
138
(
4
), p.
041007
.
28.
Ramberg
,
W.
, and
Osgood
,
W. R.
,
1943
, “Description of Stress-Strain Curves by Three Parameters,”
National Advisory Committee for Aeronautics
,
Washington, DC
, Report No.
NACA-TN-902
https://ntrs.nasa.gov/search.jsp?R=19930081614.
29.
Armstrong
,
P. J.
, and
Frederick
,
C. O.
,
1966
, “
A Mathematical Representation of the Multiaxial Bauschinger Effect
,”
Mater. High Temp.
,
24
(
1
), pp.
1
26
.
30.
Chaboche
,
J.-L.
,
1989
, “
Constitutive Equations for Cyclic Plasticity and Cyclic Viscoplasticity
,”
Int. J. Plast.
,
5
(
3
), pp.
247
302
.
31.
Chaboche
,
J.-L.
,
1986
, “
Time-Independent Constitutive Theories for Cyclic Plasticity
,”
Int. J. Plast.
,
2
(
2
), pp.
149
188
.
32.
Gong
,
Y. P.
,
Hyde
,
C. J.
,
Sun
,
W.
, and
Hyde
,
T. H.
,
2010
, “
Determination of Material Properties in the Chaboche Unified Viscoplasticity Model
,”
Proc. Inst. Mech. Eng., Part L
,
224
(
1
), pp.
19
29
.
33.
Rahman
,
S. M.
,
Hassan
,
T.
, and
Ranjithan
,
S. R.
,
2005
, “
Automated Parameter Determination of Advanced Constitutive Models
,”
ASME
Paper No. PVP2005-71634.
34.
Norton
,
F. H.
,
1929
,
The Creep of Steel at High Temperature
,
McGraw-Hill
,
New York
.
35.
Garofalo
,
F.
,
1965
,
Fundamentals of Creep and Creep Rupture in Metals
,
Macmillan
,
New York
.
36.
Lemaitre
,
J.
, and
Chaboche
,
J.-L.
,
1990
,
Mechanics of Solid Materials
,
Cambridge University Press
,
Cambridge, NY
.
37.
Kalnins
,
A.
,
Rudolph
,
J.
, and
Willuweit
,
A.
,
2013
, “
Using the Nonlinear Kinematic Hardening Material Model of Chaboche for Elastic-Plastic Ratcheting Analysis
,”
ASME
Paper No. PVT-14-1036.
38.
Imaoka
,
S.
,
2008
, “
Chaboche Nonlinear Kinematic Hardening Model, ANSYS Release 12.0.1
,” memo No. STI0805A.
39.
Moalla
,
M.
,
Lang
,
K.-H.
, and
Lohe
,
D.
,
2003
, “
The Fatigue Behavior of NiCr22Co12Mo9 Under Low-Frequency Thermal-Mechanical Loading and Superimposed Higher-Frequency Mechanical Loading
,”
Thermomechanical Fatigue Behavior of Materials
,
ASTM International
,
Dallas, TX
, pp.
195
209
.
You do not currently have access to this content.