In this study, we developed a physically based mesoscale model for dislocation dynamics systems to predict the deformation and spontaneous formation of spatio-temporal dislocation patterns over microscopic space and time. Dislocations and dislocation patterns are emblematic of plastic deformation, a nonlinear, dissipative process involving the dynamics of underlying dislocations as carriers of plastic deformation. The mesoscale model includes a set of nonlinear partial differential equations of reaction–diffusion type. Here, we consider the equations within a one-dimensional framework and analyze the stability of steady-state solutions for these equations to elucidate the associated patterns with their intrinsic length scale. The numerical solution to the model yields the spatial distribution of dislocation patterns over time and provides respective stress–strain curves. Finally, we compare the stress–strain curves associated with the dislocation patterns with the experimental results noted in the literature.

References

1.
Walgraef
,
D.
, and
Aifantis
,
E. C.
,
1985
, “
On the Formation and Stability of Dislocation Patterns—I: One-Dimensional Considerations
,”
Int. J. Eng. Sci.
,
23
(
12
), pp.
1351
1358
.
2.
Walgraef
,
D.
, and
Aifantis
,
E. C.
,
1985
, “
On the Formation and Stability of Dislocation Patterns—II: Two-Dimensional Considerations
,”
Int. J. Eng. Sci.
,
23
(
12
), pp.
1359
1364
.
3.
Walgraef
,
D.
, and
Aifantis
,
E. C.
,
1985
, “
On the Formation and Stability of Dislocation Patterns—III: Three-Dimensional Considerations
,”
Int. J. Eng. Sci.
,
23
(
12
), pp.
1365
1372
.
4.
Walgraef
,
D.
, and
Aifantis
,
E. C.
,
1988
, “
Plastic Instabilities, Dislocation Patterns and Nonequilibrium Phenomena
,”
Res Mech.
,
23
(2), pp.
161
195
.
5.
Asaro
,
R. J.
, and
Rice
,
J. R.
,
1977
, “
Strain Localization in Ductile Single Crystals
,”
J. Mech. Phys. Solids
,
25
(
5
), pp.
309
338
.
6.
Orowan
,
E.
,
1940
, “
Problems of Plastic Gliding
,”
Proc. Phys. Soc.
,
52
(
1
), pp.
8
22
.
7.
Akasheh
,
F.
,
Zbib
,
H. M.
, and
Ohashi
,
T.
,
2007
, “
Multiscale Modeling of Size Effect in FCC Crystals: Discrete Dislocation Dynamics and Dislocation-Based Gradient Plasticity
,”
Philos. Mag.
,
87
(8–9), pp.
1307
1326
.
8.
Ohashi
,
T.
,
1994
, “
Numerical Modeling of Plastic Multislip in Metal Crystals of FCC Type
,”
Philos. Mag.
,
70
(
5
), pp.
793
803
.
9.
Holt
,
D. L.
,
1970
, “
Dislocation Cell Formation in Metals
,”
J. Appl. Phys.
,
41
(
8
), pp.
3197
3201
.
10.
Aifantis
,
E. C.
,
1986
, “
On the Dynamical Origin of Dislocation Patterns
,”
Mater. Sci. Eng.
,
81
, pp.
563
574
.
11.
Walgraef
,
D.
, and
Aifantis
,
E. C.
,
1985
, “
Dislocation Patterning in Fatigued Metals as a Result of Dynamical Instabilities
,”
J. Appl. Phys.
,
58
(2), pp.
688
691
.
12.
Kratochvil
,
J.
,
1988
, “
Dislocation Pattern Formation in Metals
,”
Rev. Phys. Appl.
,
23
(
4
), pp.
419
429
.
13.
Ananthakrishna
,
G.
,
2007
, “
Current Theoretical Approaches to Collective Behavior of Dislocations
,”
Phys. Rep.
,
440
(4–6), pp.
113
259
.
14.
Arsenlis
,
A.
, and
Parks
,
D. M.
,
2002
, “
Modeling the Evolution of Crystallographic Dislocation Density in Crystal Plasticity
,”
J. Mech. Phys. Solids
,
50
(
9
), pp.
1979
2009
.
15.
Arsenlis
,
A.
,
Becker
,
R.
,
Parksf
,
D. M.
, and
Bulatov
,
V. V.
,
2004
, “
On the Evolution of Crystallographic Dislocation Density in Non-Homogeneously Deforming Crystals
,”
J. Mech. Phys. Solids
,
52
(
6
), pp.
1213
1246
.
16.
Groma
,
I.
, and
Balogh
,
P.
,
1999
, “
Investigation of Dislocation Pattern Formation in a Two-Dimensional Self-Consistent Field Approximation
,”
Acta Mater.
,
47
(
13
), pp.
3647
3654
.
17.
Hallberg
,
H.
, and
Ristinmaa
,
M.
,
2013
, “
Microstructure Evolution Influenced by Dislocation Density Gradients Modeled in a Reaction-Diffusion System
,”
Comput. Mater. Sci.
,
67
, pp.
373
383
.
18.
Kubin
,
L. P.
, and
Estrin
,
Y.
,
1988
, “
Strain Non-Uniformities and Plastic Instabilities
,”
Rev. Phys. Appl.
,
23
(
4
), pp.
573
583
.
19.
Lim
,
H.
,
Lee
,
M. G.
,
Kim
,
J. H.
,
Adams
,
B. L.
, and
Wagoner
,
R. H.
,
2011
, “
Simulation of Polycrystal Deformation With Grain and Grain Boundary Effects
,”
Int. J. Plast.
,
27
(
9
), pp.
1328
1354
.
20.
Pontes
,
J.
,
Walgraef
,
D.
, and
Aifantis
,
E. C.
,
2006
, “
On Dislocation Patterning: Multiple Slip Effects in the Rate Equation Approach
,”
Int. J. Plast.
,
22
(
8
), pp.
1486
1505
.
21.
Salazar
,
J. M.
,
Politano
,
O.
, and
Walgraef
,
D.
,
1997
, “
On the Dynamics of Dislocation Patterning
,”
Mater. Sci. Eng.
,
234–236
, pp.
397
400
.
22.
Zikry
,
M. A.
, and
KAO
,
M.
,
1996
, “
Inelastic Microstructural Failure Mechanisms in Crystalline Materials With High Angle Grain Boundaries
,”
J. Mech. Phys. Solid
,
44
(
11
), pp.
1765
1798
.
23.
Xia
,
S.
, and
El-Azab
,
A.
,
2015
, “
Computational Modelling of Mesoscale Dislocation Patterning and Plastic Deformation of Single Crystals
,”
Modell. Simul. Mater. Sci. Eng.
,
23
(
5
), p.
055009
.
24.
Li
,
D.
,
Zbib
,
H. M.
,
Sun
,
X.
, and
Khaleel
,
M.
,
2014
, “
Predicting Plastic Flow and Irradiation Hardening of Iron Single Crystal With Mechanism-Based Continuum Dislocation Dynamics
,”
Int. J. Plast.
,
52
, pp.
3
17
.
25.
Rhee
,
M.
,
Zbib
,
H.
,
Hirth
,
J.
,
Huang
,
H.
, and
De la Rubia
,
T.
,
1998
, “
Models for Long-/Short-Range Interactions and Cross Slip in 3D Dislocation Simulation of BCC Single Crystals
,”
Modell. Simul. Mater. Sci. Eng.
,
6
(
4
), pp.
467
492
.
26.
Mughrabi
,
H.
,
1983
, “
Dislocation Wall and Cell Structures and Long-Range Internal Stresses in Deformed Metal Crystals
,”
Acta Metall.
,
31
(
9
), pp.
1367
1379
.
27.
Askari
,
H.
,
Young
,
J.
,
Field
,
D.
,
Kridli
,
G.
,
Li
,
D.
, and
Zbib
,
H. M.
,
2014
, “
A Study of the Hot and Cold Deformation of Twin-Roll Cast Magnesium Alloy AZ31
,”
Philos. Mag.
,
94
(
4
), pp.
381
403
.
28.
Kocks
,
U. F.
,
1959
, “
Polyslip in Single Crystals of Face-Centered Cubic Metals
,” Ph.D. thesis, Harvard University, Cambridge, MA.
29.
Hosford
,
W. F. J.
,
Fleischer
,
R. L.
, and
Backofen
,
W. A.
,
1960
, “
Tensile Deformation of Aluminum Single Crystals at Low Temperatures
,”
Acta Metall.
,
8
(
3
), pp.
187
199
.
30.
Keh
,
A. S.
,
1965
, “
Work Hardening and Deformation Sub-Structure in Iron Single Crystals Deformed in Tension at 298 K
,”
Philos. Mag.
,
12
(
115
), pp.
9
30
.
31.
Bammann
,
D. J.
, and
Aifantis
,
E. C.
,
1982
, “
On a Proposal for a Continuum With Microstructure
,”
Acta Mech.
,
45
(1), pp.
91
121
.
32.
Kocks
,
U. F.
, and
Brown
,
T. J.
,
1966
, “
Latent Hardening in Aluminum
,”
Acta Metall.
,
14
(
2
), pp.
87
98
.
33.
Kocks
,
U. F.
,
Argon
,
A. S.
, and
Ashby
,
M. F.
,
1975
, “
Thermodynamics and Kinetics of Slip
,”
Prog. Mater. Sci.
,
19
, pp.
1
288
.
34.
Shanthraj
,
P.
, and
Zikry
,
M. A.
,
2011
, “
Dislocation Density Evolution and Interactions in Crystalline Materials
,”
Acta Mater.
,
59
(
20
), pp.
7695
7702
.
35.
Shizawa
,
K.
, and
Zbib
,
H. M.
,
1999
, “
Thermodynamical Theory of Strain Gradient Elastoplasticity With Dislocation Density—Part I: Fundamentals
,”
Int. J. Plast.
,
15
(
9
), pp.
899
938
.
36.
Watanabe
,
O.
,
Zbib
,
H. M.
, and
Takenouchi
,
E.
,
1998
, “
Crystal Plasticity: Micro-Shear Banding in Polycrystals Using Voronoi Tessellation
,”
Int. J. Plast.
,
14
(
8
), pp.
771
788
.
37.
Zbib
,
H. M.
,
1991
, “
On the Mechanics of Large Inelastic Deformations: Noncoaxiality, Axial Effects in Torsion and Localization
,”
Acta Mech.
,
87
(3), pp.
179
196
.
You do not currently have access to this content.