Microstructural and mechanical characterization investigations on three variants of a through-hardened M50 bearing steel are presented to compare and contrast their performances under rolling contact fatigue (RCF) loading. Baseline (BL) variant of M50 steel bearing balls is subjected to: (i) a surface nitriding treatment and (ii) a surface mechanical processing treatment, to obtain distinct microstructures and mechanical properties. These balls are subjected to RCF loading for several hundred million cycles at two different test temperatures, and the subsequent changes in subsurface hardness and compressive stress–strain response are measured. It was found that the RCF-affected subsurface regions grow larger in size at higher temperature. Micro-indentation hardness measurements within the RCF-affected regions revealed an increase in hardness in all the three variants. The size of the RCF-affected region and intensity of hardening were the largest in the BL material and smallest in the mechanically processed (MP) material. Based on Goodman's diagram, it is shown that the compressive residual stress reduces the effective fully reversed alternating stress amplitude and thereby retards the initiation and evolution of subsurface plasticity within the material during RCF loading. It is quantitatively shown that high material hardness and compressive residual stress are greatly beneficial for enhancing the RCF life of bearings.

References

1.
Bhattacharyya
,
A.
,
Subhash
,
G.
, and
Arakere
,
N.
,
2014
, “
Evolution of Subsurface Plastic Zone Due to Rolling Contact Fatigue of M-50 NiL Case Hardened Bearing Steel
,”
Int. J. Fatigue
,
59
, pp.
102
113
.
2.
Bhattacharyya
,
A.
,
Pandkar
,
A.
,
Subhash
,
G.
, and
Arakere
,
N.
,
2015
, “
Cyclic Constitutive Response and Effective S–N Diagram of M50 NiL Case-Hardened Bearing Steel Subjected to Rolling Contact Fatigue
,”
ASME J. Tribol.
,
137
(
4
), p.
041102
.
3.
Barrow
,
A. T. W.
, and
Rivera-Díaz-del-Castillo
,
P. E. J.
,
2011
, “
Nanoprecipitation in Bearing Steels
,”
Acta Mater.
,
59
(
19
), pp.
7155
7167
.
4.
Voskamp
,
A. P.
,
Osterlund
,
R.
,
Becker
,
P. C.
, and
Vingsbo
,
O.
,
1980
, “
Gradual Changes in Residual Stress and Microstructure During Rolling Contact Fatigue in Ball Bearings
,”
Met. Technol.
,
7
(
1
), pp.
14
21
.
5.
Voskamp
,
A. P.
,
1985
, “
Material Response to Rolling Contact Loading
,”
ASME J. Tribol.
,
107
(
3
), pp.
359
364
.
6.
Voskamp
,
A. P.
, and
Mittemeijer
,
E. J.
,
1997
, “
The Effect of the Changing Microstructure on the Fatigue Behavior During Cyclic Rolling Contact Loading
,”
Z. Metallkd.
,
88
(4), pp.
310
319
.
7.
Swahn
,
H.
,
Becker
,
P. C.
, and
Vingsbo
,
O.
,
1976
, “
Martensite Decay During Rolling Contact Fatigue in Ball Bearings
,”
Metall. Trans. A
,
7
(
8
), pp.
1099
1110
.
8.
Vingsbo
,
O.
, and
Osterlund
,
R.
,
1980
, “
Phase Changes in Fatigued Ball Bearings
,”
Metall. Trans. A
,
11
(5), pp.
701
707
.
9.
Beswick
,
J.
,
1989
, “
Fracture and Fatigue Crack Propagation Properties of Hardened 52100 Steel
,”
Metall. Trans. A
,
20
(
10
), pp.
1961
1973
.
10.
Forster
,
N. H.
,
Rosado
,
L.
, and
Ogden
,
W. P.
,
2009
, “
Rolling Contact Fatigue Life and Spall Propagation Characteristics of AISI M50, M50 NiL, and AISI 52100—Part III: Metallurgical Examination
,”
Tribol. Trans.
,
53
(
1
), pp.
52
59
.
11.
Allison
,
B.
,
Subhash
,
G.
, and
Arakere
,
N.
,
2014
, “
Influence of Initial Residual Stress on Material Properties of Bearing Steel During Rolling Contact Fatigue
,”
Tribol. Trans.
,
57
(
3
), pp.
533
545
.
12.
Sadeghi
,
F.
,
Jalalahmadi
,
B.
, and
Slack
,
T. S.
,
2009
, “
A Review of Rolling Contact Fatigue
,”
ASME J. Tribol.
,
131
(
4
), p.
041403
.
13.
Arakere
,
N.
, and
Subhash
,
G.
,
2012
, “
Work Hardening Response of M50-NiL Case Hardened Bearing Steel During Shakedown in Rolling Contact Fatigue
,”
Mater. Sci. Technol.
,
28
(
1
), pp.
34
38
.
14.
Shen
,
Y.
,
Moghadam
,
S. M.
, and
Sadeghi
,
F.
,
2015
, “
Effect of Retained Austenite–Compressive Residual Stresses on Rolling Contact Fatigue Life of Carburized AISI 8620 Steel
,”
Int. J. Fatigue
,
75
, pp.
135
144
.
15.
Moghaddam
,
S. M.
,
Bomidi
,
J. A. R.
, and
Sadeghi
,
F.
,
2014
, “
Effects of Compressive Stresses on Torsional Fatigue
,”
Tribol. Int.
,
77
, pp.
196
210
.
16.
Badisch
,
E.
, and
Mitterer
,
C.
,
2003
, “
Abrasive Wear of High Speed Steels: Influence of Abrasive Particles and Primary Carbides on Wear Resistance
,”
Tribol. Int.
,
36
(
10
), pp.
765
770
.
17.
Bergman
,
F.
,
Hedenqvist
,
P.
, and
Hogmark
,
S.
,
1997
, “
The Influence of Primary Carbides and Test Parameters on Abrasive and Erosive Wear of Selected PM High Speed Steels
,”
Tribol. Int.
,
30
(
3
), pp.
183
191
.
18.
Reed-Hill
,
R. E.
, and
Abbaschian
,
R.
,
1973
,
Physical Metallurgy Principles
, D. Von Nostrand, New York.
19.
Hoo
,
J. J.
,
1998
,
Bearing Steels: Into the 21st Century
,
ASTM International
, West Conshohocken, PA.
20.
Allison
,
B.
,
Subhash
,
G.
, and
Arakere
,
N.
,
2014
, “
Extraction and Testing of Miniature Compression Specimens From Bearing Balls Subjected to Rolling Contact Fatigue
,”
ASME J. Tribol.
,
136
(
2
), p.
021103
.
21.
Ghanem
,
F.
,
Braham
,
C.
, and
Sidhom
,
H.
,
2003
, “
Influence of Steel Type on Electrical Discharge Machined Surface Integrity
,”
J. Mater. Process. Technol.
,
142
(
1
), pp.
163
173
.
22.
Klecka
,
M. A.
,
Subhash
,
G.
, and
Arakere
,
N. K.
,
2013
, “
Microstructure–Property Relationships in M50-NiL and P675 Case-Hardened Bearing Steels
,”
Tribol. Trans.
,
56
(
6
), pp.
1046
1059
.
23.
Genel
,
K.
,
Demirkol
,
M.
, and
Çapa
,
M.
,
2000
, “
Effect of Ion Nitriding on Fatigue Behaviour of AISI 4140 Steel
,”
Mater. Sci. Eng. A
,
279
(
1
), pp.
207
216
.
24.
da Silva Rocha
,
A.
,
Strohaecker
,
T.
, and
Tomala
,
V.
,
1999
, “
Microstructure and Residual Stresses of a Plasma-Nitrided M2 Tool Steel
,”
Surf. Coat. Technol.
,
115
(
1
), pp.
24
31
.
25.
Kang
,
J.
,
Hosseinkhani
,
B.
, and
Vegter
,
R. H.
,
2015
, “
Modelling Dislocation Assisted Tempering During Rolling Contact Fatigue in Bearing Steels
,”
Int. J. Fatigue
,
75
, pp.
115
125
.
26.
Tabor
,
D.
,
1970
, “
The Hardness of Solids
,”
Rev. Phys. Technol.
,
1
(
3
), p.
145
.
27.
Prasad
,
K. E.
,
Keryvin
,
V.
, and
Ramamurty
,
U.
,
2009
, “
Pressure Sensitive Flow and Constraint Factor in Amorphous Materials Below Glass Transition
,”
J. Mater. Res.
,
24
(
3
), pp.
890
897
.
28.
Dieter
,
G.
,
1988
,
Mechanical Metallurgy
(SI Metric Edition),
McGraw-Hill
,
New York
, pp.
212
219
.
29.
Stephens
,
R. I.
,
Fatemi
,
A.
, and
Stephens
,
R. R.
,
2000
,
Metal Fatigue in Engineering
,
Wiley
, New York.
30.
Lindahl
,
E.
, and
Österlund
,
R.
,
1982
, “
212 Transmission Electron Microscopy Applied to Phase Transformations in Ball Bearings
,”
Ultramicroscopy
,
9
(
4
), pp.
355
364
.
31.
Swahn
,
H.
,
Becker
,
P.
, and
Vingsbo
,
O.
,
1976
, “
Electron-Microscope Studies of Carbide Decay During Contact Fatigue in Ball Bearings
,”
Met. Sci.
,
10
(
1
), pp.
35
39
.
32.
Johnson
,
K. L.
, and
Johnson
,
K. L.
,
1987
,
Contact Mechanics
,
Cambridge University Press
, Cambridge, UK.
33.
Harris
,
T. A.
, and
Kotzalas
,
M. N.
,
2006
,
Essential Concepts of Bearing Technology
,
CRC Press
, Boca Raton.
34.
Pandkar
,
A. S.
,
Arakere
,
N.
, and
Subhash
,
G.
,
2014
, “
Microstructure-Sensitive Accumulation of Plastic Strain Due to Ratcheting in Bearing Steels Subject to Rolling Contact Fatigue
,”
Int. J. Fatigue
,
63
, pp.
191
202
.
35.
Pandkar
,
A. S.
,
Arakere
,
N.
, and
Subhash
,
G.
,
2015
, “
Ratcheting-Based Microstructure-Sensitive Modeling of the Cyclic Hardening Response of Case-Hardened Bearing Steels Subject to Rolling Contact Fatigue
,”
Int. J. Fatigue
,
73
, pp.
119
131
.
36.
Bhadeshia
,
H. K. D. H.
,
2012
, “
Steels for Bearings
,”
Prog. Mater. Sci.
,
57
(
2
), pp.
268
435
.
You do not currently have access to this content.