The creep evolution was followed by conducting magnetic measurements on ferromagnetic steel samples exposed to different creep strains at a constant temperature. 410 stainless steel (410 SS) rods were submitted to creep at 625°C applying a constant stress of 124 MPa for different creep times. A magnetic hysteresis curve was generated for every sample. It was found that the shape of the hysteresis curves varied with creep time. The extent of creep was assessed by measuring magnetic saturation, coercivity, and remanence. The changes in microstructure due to creep are related to variations in magnetic properties, which are explained in terms of possible magnetic domain pinning. It was observed that the microstructural changes due to creep are better correlated with the coercivity of the material. In summary, it is feasible to use a magnetoelastic sensor to detect the partial level of creep in a ferromagnetic material by nondestructive examination.

1.
Kim
,
D. W.
, and
Kwon
,
D.
, 2003, “
Quantification of the Barkhausen Noise Method for the Evaluation of Time-Dependent Degradation
,”
J. Magn. Magn. Mater.
0304-8853,
257
, pp.
175
183
.
2.
Sablik
,
M. J.
,
Augustyaniak
,
B.
, and
Piotrowski
,
L.
, 2004, “
Modeling Incipient Creep Damage Effects on Barkhausen Noise and Magnetoacoustic Emission
,”
J. Magn. Magn. Mater.
0304-8853,
272–276
, pp.
e523
e525
.
3.
Byeon
,
J. W.
, and
Kwun
,
S. I.
, 2003, “
Magnetic Nondestructive Evaluation of Thermally Degraded 2.25 Cr-1 Mo Steel
,”
Mater. Lett.
0167-577X,
58
, pp.
94
98
.
4.
Govindaraju
,
M. R.
,
Kaminski
,
D. A.
,
Devine
,
M. K.
,
Biner
,
S. B.
, and
Jiles
,
D. C.
, 1997, “
Nondestructive Evaluation of Creep Damage in Power Plant Steam Generators and Piping by Magnetic Measurements
,”
NDT Int.
0308-9126,
30
(
1
), pp.
11
17
.
5.
Nagae
,
Y.
, 2004, “
A Study on Detection of Creep Damage Before Crack Initiation in Austenitic Stainless Steel
,”
Mater. Sci. Eng., A
0921-5093,
387–389
, pp.
665
669
.
6.
Polar
,
A.
,
Indacochea
,
J. E.
,
Wang
,
M. L.
,
Singh
,
V.
, and
Lloyd
,
G.
, 2004, “
Measurement and Microstructural Evaluation of Creep-Induced Changes in Magnetic Properties of a 410 Stainless Steel
,”
ASME J. Eng. Mater. Technol.
0094-4289,
126
(
4
), pp.
392
397
.
7.
Haasen
,
P.
, 1972, “
Mechanical, Magnetic and Superconductor Hardening by Precipitates
,”
Mater. Sci. Eng.
0025-5416,
9
, pp.
191
196
.
8.
Devine
,
M. K.
, and
Jiles
D. C.
, 1992, “
Effects of High Temperature Creep on Magnetic Properties of Steels
,”
IEEE Trans. Magn.
0018-9464,
28
(
5
), pp.
2465
2466
.
9.
Adler
,
E.
, and
Pfeiffer
,
H.
, 1974, “
The Influence of Grain Size and Impurities on the Magnetic Properties of the Soft Magnetic alloy 47.5% NiFe
,”
IEEE Trans. Magn.
0018-9464,
10
(
2
), pp.
172
174
.
10.
Fischer
,
R.
, and
Kronmuller
,
H.
, 1998, “
The Role of Grain Boundaries in Nanoscaled High-Performance Permanent Magnets
,”
J. Magn. Magn. Mater.
0304-8853,
184
, pp.
166
172
.
11.
Kim
,
G. S.
,
Indacochea
,
J. E.
, and
Spry
,
T. D.
, 1988, “
Weldability Studies in CrMoV Turbine Rotor Steel
,”
J. Mater. Eng.
0931-7058,
10
(
2
), pp.
117
132
.
12.
Kim
,
G. S.
,
Indacochea
,
J. E.
, and
Spry
,
T. D.
, 1989, “
Weldability Studies in HP and IP Turbine Rotor Steels
,” EPRI Report No. GS-6233.
13.
Kim
,
G. S.
,
Indacochea
,
J. E.
, and
Spry
,
T. D.
, 1991, “
Metallurgical Aspects in Welding CrMoV Turbine Rotor Steels–Part I: Evaluation of the Base Material and HAZ
,”
J. Mater. Sci. Technol.
0861-9786,
7
(
1
), pp.
42
49
.
14.
Oh
,
Y. K.
, and
Indacochea
,
J. E.
, 1997, “
Effect of HAZ Softening on Creep Rupture Properties of 1.0Cr-1.0Mo-0.25V Turbine Rotor Steels—Part I: Creep Rupture Life
,”
Welding Journal of the Korean Welding Society
1225-6153,
15
(
2
), pp.
47
55
.
15.
Indacochea
,
J. E.
, and
Seshadri
,
R.
, 1997, “
An Analysis of Creep Damage in a Welded Low Alloy Steel Rotor
,”
Mater. Sci. Eng., A
0921-5093,
234–236
, pp.
555
558
.
16.
Indacochea
,
J. E.
,
Wang
,
G.
,
Seshadri
,
R.
, and
Oh
,
Y. K.
, 2000, “
Creep Rupture Properties of High-Temperature Bainitic Steels After Weld Repair
,”
ASME J. Eng. Mater. Technol.
0094-4289,
122
, pp.
259
263
.
17.
Singh
,
V.
, 2003, “
Measurement of Corrosion of Steel Reinforcement by Electromagnetic Non Destructive Evaluation Technique
,” Ph.D. thesis, University of Illinois at Chicago, Chicago, IL.
18.
Rumiche
,
F.
,
Indacochea
,
J. E.
, and
Wang
,
M. L.
, 2008, “
Detection and Monitoring of Corrosion in Structural Carbon Steels Using Electromagnetic Sensors
,”
ASME J. Eng. Mater. Technol.
0094-4289,
130
, p.
031008
.
19.
Dijkstra
,
L. J.
, 1969, “
Non Ferromagnetic Precipitate in a Ferromagnetic Matrix
,”
Magnetism and Metallurgy
,
A.
Berkowitz
and
E.
Kneller
, ed.,
Academic Press
,
New York
.
20.
Neel
,
L.
, 1944, “
Effet des cavites et des inclusions sur le champ coercitif
,”
Cah. Phys.
0366-5291,
25
, pp.
21
44
.
21.
Nacken
,
M.
, and
Heller
,
W.
, 1960, “
Aderung der Koerzitivkraft bei der Alterung weicher unlegierter Stahle E
,”
Arch. Eisenhuettenwes.
0003-8962,
31
, pp.
153
160
.
22.
Mager
,
A.
, 1952, “
Über den Einfluß der Korngröße auf die Koerzitivkraft
,”
Annalen der Physik
,
446
(
1
), pp.
15
16
.
23.
Kittel
,
C.
, 1949, “
Physical Theory of Ferromagnetic Domains
,”
Rev. Mod. Phys.
0034-6861,
21
, pp.
541
583
.
You do not currently have access to this content.