Understanding and quantifying the effects of overloads/overstrains on the cyclic damage accumulation at a microscale discontinuity is essential for the development of a multistage fatigue model under variable amplitude loading. Micromechanical simulations are conducted on a 7075-T651 Al alloy to quantify the cyclic microplasticity in the matrix adjacent to intact or cracked, life-limiting intermetallic particles. An initial overstrain followed by constant amplitude cyclic straining is simulated considering minimum to maximum strain ratios of 0 and 1. The nonlocal equivalent plastic strain at the cracked intermetallic particles reveals overload effects manifested in two forms: (1) the cyclic plastic shear strain range is greater in the cycles following an initial tensile overstrain than without the overstrain and (2) the initial overstrain causes the nonlocal cumulative equivalent plastic strain to double in subsequent tensile-going half cycles and triple in subsequent compressive-going half cycles, as compared with cases without an initial tensile overstrain. The cyclic plastic zone at the microdiscontinuity corresponds to that of the maximum strain during the initial overstrain and the nonlocal cyclic plastic shear strain range in the matrix near the intact or cracked inclusion is substantially increased for the same remote strain amplitude relative to the case without initial overstrain. These results differ completely from the effects of initial tensile overload on the response at a macroscopic notch root or at the tip of a long fatigue crack in which the driving forces for crack formation or growth, respectively, are reduced. The micromechanical simulation results support the incorporation of enhanced cyclic microplasticity and driving force to form fatigue cracks at cracked inclusions following an initial tensile overstrain in a fatigue incubation model.

1.
Jono
,
M.
, 2005, “
Fatigue Damage and Crack Growth Under Variable Amplitude Loading With Reference to the Counting Methods of Stress-Strain Ranges
,”
Int. J. Fatigue
0142-1123,
27
, pp.
1006
1015
.
2.
Dattoma
,
V.
,
Giancane
,
S.
,
Nobile
,
R.
, and
Panella
,
F. W.
, 2006, “
Fatigue Life Prediction Under Variable Loading Based on a New Non-Linear Continuum Damage Mechanics Model
,”
Int. J. Fatigue
0142-1123,
28
, pp.
89
95
.
3.
Sunder
,
R.
, 2004, “
On the Hysteretic Nature of Variable Amplitude Fatigue Crack Growth
,”
Fifth International Conference on Fatigue Damage of Structural Materials
, Hyannis, MA, Sept. 19–24.
4.
Dugdale
,
D. S.
, 1960, “
Yielding of Steel Sheets Containing Slits
,”
J. Mech. Phys. Solids
0022-5096,
8
, pp.
100
104
.
5.
Elber
,
W.
, 1970, “
Fatigue Crack Closure Under Cyclic Tension
,”
Eng. Fract. Mech.
0013-7944,
2
, pp.
37
45
.
6.
Newman
,
J. C.
, Jr.
, 1981, “
A Crack-Closure Model for Predicting Fatigue Crack Growth Under Aircraft Spectrum Loading
,”
Methods and Models for Predicting Fatigue Crack Growth Under Random Loading, ASTM STP 748
,
J. B.
Chang
and
C. M.
Hudson
, eds.,
American Society for Testing and Materials
,
Philadelphia
, pp.
53
84
.
7.
Newman
,
J. C.
, Jr.
, 1998, “
An Evaluation of Plasticity-Induced Crack-Closure Concept and Measurement Methods
,”
Advances in Fatigue Crack Closure Measurement and Analysis, ASTM STP 1343
,
R. C.
McClung
and
J. C.
Newman
, Jr.
, eds.,
American Society for Testing and Materials
,
Philadelphia
.
8.
Fleck
,
N. A.
, and
Newman
,
J. C.
, Jr.
, 1988, “
Analysis of Crack Closure Under Plane Strain Conditions
,”
Mechanics of Fatigue Crack Closure, ASTM STP 982
,
J. C.
Newman
, Jr.
, and
W.
Elber
, eds.,
American Society for Testing and Materials
,
Philadelphia
, pp.
319
341
.
9.
McClung
,
R. C.
, and
Sehitoglu
,
H.
, 1989, “
On the Finite Element Analysis of Fatigue Crack Closure
,”
Eng. Fract. Mech.
0013-7944,
33
, pp.
237
272
.
10.
McClung
,
R. C.
, and
Sehitoglu
,
H.
, 1991, “
Characterization of Fatigue Crack Growth in Intermediate and Large Scale Yielding
,”
ASME J. Eng. Mater. Technol.
0094-4289,
113
, pp.
15
22
.
11.
McClung
,
R. C.
, and
Sehitoglu
,
H.
, 1992, “
Closure and Growth of Fatigue Crack at Notches
,”
Mater. Sci. Eng., A
0921-5093,
114
, pp.
1
7
.
12.
Sehitoglu
,
H.
,
Gall
,
K.
, and
Garcia
,
A. M.
, 1989, “
Recent Advances in Fatigue Crack Growth Modeling
,”
Int. J. Fract.
0376-9429,
80
, pp.
165
192
.
13.
Roychowdhury
,
S.
, and
Dodds
,
R. H.
, 2003, “
Three-Dimensional Effects on Fatigue Crack Closure in the Small-Scale Yielding Regime—A Finite Element Study
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
26
, pp.
663
673
.
14.
Pippan
,
R.
,
Bichler
,
C.
,
Tabernig
,
B.
, and
Weinhandl
,
H.
, 2005, “
Overloads in Ductile and Brittle Materials
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
28
, pp.
971
981
.
15.
McDowell
,
D. L.
,
Gall
,
K.
,
Horstemeyer
,
M. F.
, and
Fan
,
J.
, 2003, “
Microstructure-Based Fatigue Modeling of Cast A356-T6 Alloy
,”
Eng. Fract. Mech.
0013-7944,
70
, pp.
49
80
.
16.
Xue
,
Y.
,
McDowell
,
D. L.
,
Horstemeyer
,
M. F.
,
Dale
,
M. H.
, and
Jordon
,
J. B.
, 2007, “
Microstructure-Based Multistage Fatigue Modeling of a 7075-T651 Aluminum Alloy
,”
Eng. Fract. Mech.
0013-7944,
74
, pp.
2810
2823
.
17.
Shiozawa
,
K.
,
Tohda
,
Y.
, and
Sun
,
S. M.
, 1997, “
Crack Initiation and Small Fatigue Crack Growth Behaviour of Squeeze-Cast Al–Si Aluminum Alloys
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
20
(
2
), pp.
237
247
.
18.
Xue
,
Y.
,
El Kadiri
,
H.
,
Horstemeyer
,
M. F.
,
Jordon
,
J. B.
, and
Weiland
,
H.
, 2007, “
Micromechanism of Multistage Crack Growth in Aluminum Alloy 7075-T651
,”
Acta Mater.
1359-6454,
55
, pp.
1975
84
.
19.
Fan
,
J.
,
McDowell
,
D. L.
,
Horstemeyer
,
M.
, and
Gall
,
K.
, 2003, “
Cyclic Plasticity at Pores and Inclusions in Cast Al–Si Alloys
,”
Eng. Fract. Mech.
0013-7944,
70
, pp.
1281
1302
.
20.
Gall
,
K.
,
Horstemeyer
,
M. F.
,
McDowell
,
D. L.
, and
Fan
,
J.
, 2000, “
Finite Element Analysis of the Stress Distributions Near Damaged Si Particle Clusters in Case Al–Si Alloys
,”
Mech. Mater.
0167-6636,
32
(
5
), pp.
277
301
.
21.
Mwanza
,
M. C.
,
Joyce
,
M. R.
,
Lee
,
K. K.
,
Syngellakis
,
S.
, and
Reed
,
P. A. S.
, 2003, “
Microstructural Characterization of Fatigue Crack Initiation in Al-Based Plain Bearing Alloys
,”
Int. J. Fatigue
0142-1123,
25
, pp.
1135
1145
.
22.
Patton
,
G.
,
Rinaldi
,
C.
,
Brechet
,
Y.
,
Lormand
,
G.
, and
Fougeres
,
R.
, 1998, “
Study of Fatigue Damage in 7010 Aluminum Alloy
,”
Mater. Sci. Eng. A
0025-5416,
254
, pp.
207
218
.
23.
Newman
,
J. C.
, Jr.
,
Wu
,
X. R.
,
Wenneri
,
S. L.
, and
Li
,
C. G.
, 1994, “
Small-Crack Effects in High-Strength Aluminum Alloys
,” NASA Technical Report, Hampton, VA.
24.
Wang
,
Q. G.
,
Caceres
,
C. H.
, and
Griffiths
,
J. R.
, 2003, “
Damage by Eutectic Particle Cracking in Aluminum Casting Alloys A356/357
,”
Metall. Mater. Trans. A
1073-5623,
34
, pp.
2901
2912
.
25.
Christensen
,
R. M.
, 1979,
Mechanics of Composite Materials
,
Wiley
,
New York, NY
.
26.
Aboudi
,
J.
, 1991,
Mechanics of Composite Materials: A Unified Micromechanics Approach
,
Elsevier
,
New York, NY
.
27.
Nemat-Nasser
,
S.
, and
Hori
,
M.
, 1993,
Micromechanics: Overall Properties of Heterogeneous Materials
,
North-Holland
,
New York, NY
.
28.
Hill
,
R.
, 1963, “
Elastic Properties of Reinforced Solids: Some Theoretical Principles
,”
J. Mech. Phys. Solids
0022-5096,
11
, pp.
357
372
.
29.
McDowell
,
D. L.
, 2000, “
Modeling and Experiments in Plasticity
,”
Int. J. Solids Struct.
0020-7683,
37
, pp.
293
309
.
30.
Fan
,
J.
, and
Hao
,
S.
, 2004, “
A Design-Centered Approach in Developing Al–Si-Based Light-Weight Alloys With Enhanced Fatigue Life and Strength
,”
J. Comput.-Aided Mater. Des.
0928-1045,
11
, pp.
139
161
.
31.
Shen
,
H.
, and
Lissenden
,
C. J.
, 2002, “
3D Finite Element Analysis of Particle-Reinforced Aluminum
,”
Mater. Sci. Eng.
0025-5416,
A338
, pp.
271
281
.
32.
ABAQUS
, 2006, ABAQUS/Standard 6.6, www.abaqus.com/www.abaqus.com/
33.
Bammann
,
D. J.
,
Chiesa
,
M. L.
,
Horstemeyer
,
M. F.
, and
Weingarten
,
L. I.
, 1993, “
Failure in Ductile Materials Using Finite Element Methods
,”
Structural Crashworthiness and Failure
,
N.
Jones
and
T.
Wierzbicki
, eds.,
Taylor & Francis
,
Oxon, OX
, pp.
1
54
.
34.
Xie
,
C. L.
,
Ghosh
,
S.
, and
Groeber
,
M.
, 2004, “
Modeling Cyclic Deformation of HSLA Steels Using Crystal Plasticity
,”
ASME J. Eng. Mater. Technol.
0094-4289,
126
, pp.
339
352
.
35.
Ritchie
,
R. O.
, 1999, “
Mechanisms of Fatigue-Crack Propagation in Ductile and Brittle Solids
,”
Int. J. Fract.
0376-9429,
100
, pp.
55
83
.
36.
Jordon
,
J. B.
,
Horstemeyer
,
M. F.
,
Solanki
,
K.
, and
Xue
,
Y.
, 2007, “
Damage and Stress State Influence on the Bauschinger Effect in Aluminum Alloys
,”
Mech. Mater.
0167-6636,
39
, pp.
920
931
.
You do not currently have access to this content.