Advanced high strength steels (AHSS) are performance-based steel grades and their global material properties can be achieved with various steel chemistries and manufacturing processes, leading to various microstructures. In this paper, we investigate the influence of the manufacturing process and the resulting microstructure difference on the overall mechanical properties, as well as the local formability behaviors of AHSS. For this purpose, we first examined the basic material properties and the transformation kinetics of three different commercial transformation induced plasticity (TRIP) 800 steels under different testing temperatures. The experimental results show that the mechanical and microstructural properties of the TRIP 800 steels significantly depend on the thermomechanical processing parameters employed in making these steels. Next, we examined the local formability of two commercial dual phase (DP) 980 steels which exhibit noticeably different formability during the stamping process. Microstructure-based finite element analyses are carried out to simulate the localized deformation process with the two DP 980 microstructures, and the results suggest that the possible reason for the difference in formability lies in the morphology of the hard martensite phase in the DP microstructure. The results of this study suggest that a set of updated material acceptance and screening criteria is needed to better quantify and ensure the manufacturability of AHSS.

1.
WorldAutoSteel
, 2006, “
Advanced High Strength Steel (AHSS) Application Guidelines
,” Version 3, World Steel Association, Middletown, OH.
2.
Sun
,
X.
,
Stephens
,
E.
, and
Khaleel
,
M.
, 2007, “
Effects of Manufacturing Processes and In-Service Variations on the Properties of TRIP Steels
,” SAE Technical Paper No. 2007-01-0793.
3.
Grujicic
,
M.
,
Erturk
,
T.
, and
Owen
,
W. S.
, 1986, “
A Finite Element Analysis of the Effect of the Accommodation Strains in the Ferrite Phase on the Work Hardening of a Dual-Phase Steel
,”
Mater. Sci. Eng.
0025-5416,
82
, pp.
151
159
.
4.
Stringfellow
,
R. G.
,
Parks
,
D. M.
, and
Olson
,
G. B.
, 1992, “
A Constitutive Model for Transformation Plasticity Accompanying Strain-Induced Martensitic Transformations in Metastable Austenitic Steels
,”
Acta Metall. Mater.
0956-7151,
40
(
7
), pp.
1703
1716
.
5.
Marketz
,
F.
, and
Fischer
,
F. D.
, 1994, “
A Micromechanical Study on the Coupling Effect Between Microplastic Deformation and Martensitic Transformation
,”
Comput. Mater. Sci.
0927-0256,
3
(
2
), pp.
307
325
.
6.
Sun
,
S.
, and
Pugh
,
M.
, 2002, “
Properties of Thermomechanically Processed Dual-Phase Steels Containing Fibrous Martensite
,”
Mater. Sci. Eng., A
0921-5093,
335
(
1–2
), pp.
298
308
.
7.
Al-Abbasi
,
F. M.
, and
Nemes
,
J. A.
, 2003, “
Micromechanical Modeling of Dual Phase Steels
,”
Int. J. Mech. Sci.
0020-7403,
45
(
9
), pp.
1449
1465
.
8.
Berbenni
,
S.
,
Favier
,
V.
,
Lemoine
,
X.
, and
Berveiller
,
M.
, 2004, “
Micromechanical Modeling of the Elastic-Viscoplastic Behavior of Polycrystalline Steels Having Different Microstructures
,”
Mater. Sci. Eng., A
0921-5093,
372
(
1–2
), pp.
128
136
.
9.
Han
,
H. N.
,
Lee
,
C. G.
,
Oh
,
C. -S.
,
Lee
,
T. -H.
, and
Kim
,
S. -J.
, 2004, “
A Model for Deformation Behavior and Mechanically Induced Martensitic Transformation of Metastable Austenitic Steel
,”
Acta Mater.
1359-6454,
52
(
17
), pp.
5203
5214
.
10.
Tjahjanto
,
D. D.
,
Turteltaub
,
S.
,
Suiker
,
A. S. J.
, and
van der Zwaag
,
S.
, 2006, “
Modelling of the Effects of Grain Orientation on Transformation-Induced Plasticity in Multiphase Carbon Steels
,”
Modell. Simul. Mater. Sci. Eng.
0965-0393,
14
(
4
), pp.
617
636
.
11.
Jacques
,
P. J.
,
Furnémont
,
Q.
,
Lani
,
F.
,
Pardoen
,
T.
, and
Delannay
,
F.
, 2007, “
Multiscale Mechanics of TRIP-Assisted Multiphase Steels: I. Characterization and Mechanical Testing
,”
Acta Mater.
1359-6454,
55
(
11
), pp.
3681
3693
.
12.
Uthaisangsuk
,
V.
,
Prahl
,
U.
, and
Bleck
,
W.
, 2008, “
Micromechanical Modeling of Damage Behavior of Multiphase Steels
,”
Comput. Mater. Sci.
0927-0256,
43
(
1
), pp.
27
35
.
13.
Sun
,
X.
,
Choi
,
K. S.
,
Liu
,
W. N.
, and
Khaleel
,
M. A.
, 2008, “
Predicting Failure Modes and Ductility of Dual Phase Steels Using Plastic Strain Localization
,”
Int. J. Plast.
0749-6419, in press.
14.
Choi
,
K. S.
,
Liu
,
W. N.
,
Sun
,
X.
,
Khaleel
,
M. A.
,
Ren
,
Y.
, and
Wang
,
Y. D.
, 2008, “
Advanced Micromechanical Model for Transformation-Induced Plasticity Steels With Application of In-Situ High-Energy X-Ray Diffraction Method
,”
Metall. Mater. Trans. A
1073-5623,
39
(
13
), pp.
3089
3096
.
15.
Choi
,
K. S.
,
Liu
,
W. N.
,
Sun
,
X.
, and
Khaleel
,
M. A.
, 2009, “
Micromechanics-Based Constitutive Modeling of TRIP Steel—Prediction of Ductility and Failure Mode Under Different Loading Condition
,”
Acta Mater.
1359-6454,
57
(
8
), pp.
2592
2604
.
16.
Choi
,
K. S.
,
Liu
,
W. N.
,
Sun
,
X.
, and
Khaleel
,
M. A.
, 2009, “
Influence of Martensite Mechanical Properties on Failure Mode and Ductility of Dual-Phase Steels
,”
Metall. Mater. Trans. A
1073-5623,
40
(
4
), pp.
796
809
.
17.
Hu
,
X. H.
,
Jain
,
M.
,
Wilkinson
,
D. S.
, and
Mishra
,
R. K.
, 2008, “
Microstructure-Based Finite Element Analysis of Strain Localization Behavior in AA5754 Aluminum Sheet
,”
Acta Mater.
1359-6454,
56
(
13
), pp.
3187
3201
.
18.
De Cooman
,
B. C.
, 2004, “
Structure-Properties Relationship in TRIP Steels Containing Carbide-Free Bainite
,”
Curr. Opin. Solid State Mater. Sci.
1359-0286,
8
(
3–4
), pp.
285
303
.
19.
Cong
,
Z. H.
,
Jia
,
N.
,
Sun
,
X.
,
Ren
,
Y.
,
Almer
,
J.
, and
Wang
,
Y. D.
, 2009, “
Stress and Strain Partitioning of Ferrite and Martensite During Deformation
,”
Metall. Mater. Trans. A
1073-5623,
40
(
6
), pp.
1383
1387
.
20.
Sakaki
,
T.
,
Ohnuma
,
K.
,
Sugimoto
,
K.
, and
Ohtakara
,
Y.
, 1990, “
Plastic Anisotropy of Dual-Phase Steels
,”
Int. J. Plast.
0749-6419,
6
(
5
), pp.
591
613
.
You do not currently have access to this content.