A theoretical analysis of plane strain incompressible velocity fields is first carried out. Two types of local fields are distinguished according to the sign of det(L), where L is the velocity gradient tensor, whereas det(L)=0 is associated with simple shear. A geometrical interpretation is used to illustrate the various decompositions of L. Finally, it is suggested that the condition det(L)=0 can be used to predict the occurrence of shear bands during metal forming processes.

1.
Colin
,
A.
,
Desrayaud
,
C.
,
Mineur
,
M.
, and
Montheillet
,
F.
, 2007, “
A Physically Based Flow Rule for the Simulation of Ti–6Al–4V Forging in the α-β Range
,”
Mater. Sci. Forum
0255-5476,
539–543
, pp.
3661
3666
.
2.
Semiatin
,
S. L.
, and
Jonas
,
J. J.
, 1984,
Formability and Workability of Metals: Plastic Instability and Flow Localization
,
American Society for Metals
,
Metals Park
,
OH
.
3.
Briottet
,
L.
,
Jonas
,
J. J.
, and
Montheillet
,
F.
, 1996, “
A Mechanical Interpretation of the Activation Energy of High Temperature Deformation in Two Phase Materials
,”
Acta Mater.
,
44
, pp.
1665
1672
. 1359-6454
4.
Recht
,
R. F.
, 1964, “
Catastrophic Thermoplastic Shear
,”
ASME J. Appl. Mech.
,
193
, pp.
189
193
. 0021-8936
5.
Roessig
,
K. M.
, and
Masson
,
J. J.
, 1999, “
Adiabatic Shear Localization in the Dynamic Punch Test, Part II: Numerical Simulations
,”
Int. J. Plast.
,
15
, pp.
263
283
. 0749-6419
6.
Semiatin
,
S. L.
, and
Lahoti
,
G. D.
, 1982, “
The Occurrence of Shear Bands in Isothermal Hot Forging
,”
Metall. Trans. A
,
13A
, pp.
275
288
. 0749-6419
7.
Batra
,
R. C.
, and
Lear
,
M. H.
, 2005, “
Adiabatic Shear Banding in Plane Strain Tensile Deformation of 11 Thermo-Elasto-Viscoplastic Materials With Finite Thermal Wave Speed
,”
Int. J. Plast.
,
21
, pp.
1521
1545
. 0749-6419
8.
Ding
,
R.
,
Guo
,
Z. X.
, and
Wilson
,
A.
, 2002, “
Microstructural Evolution of a Ti–6Al–4V Alloy During Thermomechanical Processing
,”
Mater. Sci. Eng., A
,
327
, pp.
233
245
. 0921-5093
9.
Bai
,
Y. L.
, 1982, “
Thermoplastic Instability in Simple Shear
,”
J. Mech. Phys. Solids
0022-5096,
30
, pp.
195
207
.
10.
Batra
,
R. C.
, and
Wei
,
Z. G.
, 2007, “
Instability Strain and Shear Band Spacing in Simple Tensile/Compressive Deformations of Thermoviscoplastic Materials
,”
Int. J. Impact Eng.
,
34
, pp.
448
463
. 0734-743X
11.
Fressengeas
,
C.
, and
Molinari
,
A.
, 1987, “
Instability and Localization of Plastic Flow in Shear at High Strain Rates
,”
J. Mech. Phys. Solids
0022-5096,
35
, pp.
185
211
.
12.
Forest
,
S.
, and
Pilvin
,
P.
, 1999, “
Modeling Finite Deformation of Polycrystals Using Local Objective Frames
,”
Z. Angew. Math. Mech.
,
79
, pp.
S199
S202
. 0044-2267
13.
2007, Abaqus Theory Manual, Version 6.7.1, available online.
14.
Colin
,
A.
, 2007, “
Hétérogénéités de déformation au cours du forgeage d’aubes en alliage de titane TA6V
,” Ph.D. thesis, Ecole Nationale Supérieure des Mines de Saint-Étienne.
You do not currently have access to this content.