A microstructually motivated, three-dimensional, large deformation, strain rate dependent constitutive model has been developed for a semi-crystalline, blended, thermoplastic olefin (TPO) (Wang, Y., 2002, Ph.D. thesis, The University of Michigan, Ann Arbor, MI). Various experiments have been conducted to characterize the TPO and to verify the modeling approach (Wang, Y., 2002, Ph.D. thesis, The University of Michigan, Ann Arbor, MI). The model includes a quantitative rate-dependent Young’s modulus, a nonlinear viscoelastic response between initial linear elastic response and yield due to inherent microstructural irregularity, rate and temperature dependent yield with two distinctive yield mechanisms for low and high strain rates, temperature-dependent strain hardening, plastic deformation of crystalline regions, and adiabatic heating. It has been shown to accurately capture the observed TPO stress-strain behavior including the rate-dependent initial linear elastic response; temperature, strain rate, and deformation state-dependent yield; temperature and deformation state-dependent strain hardening; and pronounced thermal softening effects at high (impact) strain rates. The model has also been examined for its ability to predict the response in plane strain compression based on material parameters chosen to capture the uniaxial compression response. The model is predictive of the initial strain rate dependent stiffness, yield, and strain hardening responses in plane strain. Such predictive capability demonstrates the versatility with which this model captures the three-dimensional anisotropic nature of TPO stress-strain behavior.

1.
Przybylo
,
P. A.
, “
Experimental Investigation and Constitutive Modeling of Rubbery Polymers
,” Ph.D. thesis, The University of Michigan, Ann Arbor, MI.
2.
Wang
,
Y.
,
Arruda
,
E. M.
, and
Przybylo
,
P. A.
, 2001, “
Characterization and Constitutive Modeling of a Plasticized Poly(vinyl chloride) for a Broad Range of Strain Rates
,”
Rubber Chem. Technol.
0035-9475,
74
(
4
), pp.
560
573
.
3.
Wang
,
Y.
, 2002, “
Characterization, Testing and Constitutive Modelling of an Impact Modified Polypropylene
,” Ph.D. thesis, The University of Michigan, Ann Arbor, MI.
4.
Arruda
,
E. M.
,
Boyce
,
M. C.
, and
Jayachandran
,
R.
, 1995, “
Effects of Strain-Rate, Temperature and Thermomechanical Coupling on the Finite Strain Deformation of Glassy-Polymers
,”
Mech. Mater.
0167-6636,
19
, pp.
193
212
.
5.
Arruda
,
E. M.
,
Ahzi
,
S.
,
Li
,
Y.
, and
Ganesan
,
A.
, 1997, “
Rate Dependent Deformatin of Semi-Crystalline Polypropylene Near Room Temperature
,”
ASME J. Eng. Mater. Technol.
0094-4289,
119
, pp.
216
222
.
6.
Borggreve
,
R. J. M.
,
Gaymans
,
R. J.
, and
Eichenwald
,
H. M.
, 1989, “
Impact Behavior of Nylon Rubber Blends: 6. Influence of Structure on Voiding Processes—Toughening Mechanism
,”
Polymer
0032-3861,
30
(
1
), pp.
78
83
.
7.
Collyer
,
A. A.
, 1994,
Rubber Toughened Engineering Plastics
,
Champman and Hall
, London.
8.
Liang
,
J. Z.
, and
Li
,
R. K. Y.
, 2000, “
Rubber Toughening in Polypropylene: A Review
,”
J. Appl. Polym. Sci.
0021-8995,
77
, pp.
409
417
.
9.
van der Wal
,
A.
, and
Gaymans
,
R. J.
, 1999, “
Polypropylene-Rubber Blends: 5. Deformation Mechanism During Fracture
,”
Polymer
0032-3861,
40
, pp.
6067
6075
.
10.
Michler
,
G. H.
, and
Bucknall
,
C. B.
, 2001, “
New Toughening Mechanisms in Rubber Modified Polymers
,”
Plast. Rubber Compos.
1465-8011,
30
(
3
), pp.
110
115
.
11.
Mulliken
,
A. D.
, and
Boyce
,
M. C.
, 2006, “
Mechanics of the Rate-Dependent Elastic-Plastic Deformation of Glassy Polymers From Low to High Strain Rates
,”
Int. J. Solids Struct.
0020-7683,
43
(
5
), pp.
1331
1356
.
12.
Richeton
,
J.
,
Ahzi
,
S.
,
Daridon
,
L.
, and
Rémond
,
Y.
, 2005, “
A Formulation of the Cooperative Model for the Yield Stress of Amorphous Polymers for a Wide Range of Strain Rates and Temperatures
,”
Polymer
0032-3861,
46
(
16
), pp.
6035
6043
.
13.
Richeton
,
J.
,
Ahzi
,
S.
,
Vecchio
,
K. S.
,
Jiang
,
F.
, and
Adharapurapu
,
R. R.
, 2006, “
Influence of Temperature and Strain Rate on the Mechanical Behavior of Three Amorphous Polymers: Characterization and Modeling of the Compressive Yield Stress
,”
Int. J. Solids Struct.
0020-7683,
43
(
7–8
), pp.
2318
2335
.
14.
Knauss
,
W. G.
, and
Emri
,
I. J.
, 1989, “
Nonlinear Viscosity by Integral Representation With a State Variable
,” ASME Winter Meeting.
15.
Rendell
,
R. W.
,
Ngai
,
K. L.
,
Fong
,
G. R.
, and
Bankert
,
R. J.
, 1987, “
Nonlinear Viscoelasticity and Yield—Application of a Coupling Model Dependent on Temperature and Rate Dependent Free Volume Content
,”
Polym. Eng. Sci.
0032-3888,
27
(
1
), pp.
2
15
.
16.
Argon
,
A. S.
, 1973, “
A Theory for the Low-Temperature Plastic Deformation of Glassy Polymers
,”
Philos. Mag.
0031-8086,
28
, pp.
839
865
.
17.
Robertson
,
R. E.
, 1966, “
Theory of Plasticity of Glassy Polymers
,”
J. Chem. Phys.
0021-9606,
44
(
10
), p.
3950
.
18.
Bowden
,
P. B.
, and
Raha
,
S.
, 1974, “
Molecular Model for Yield and Flow in Amorphous Glassy Polymers Making Use of a Dislocation Analog
,”
Philos. Mag.
0031-8086,
29
(
1
), pp.
149
166
.
19.
Eyring
,
H.
, 1936, “
Viscosity, Plasticity, and Diffusion as Examples of Absolute Reaction Rates
,”
J. Chem. Phys.
0021-9606,
4
, pp.
283
292
.
20.
Hasan
,
O. A.
, and
Boyce
,
M. C.
, 1995, “
A Constitutive Model for the Nonlinear Viscoelastic Viscoplastic Behavior of Glassy-Polymers
,”
Polym. Eng. Sci.
0032-3888,
35
(
4
), pp.
331
344
.
21.
Haward
,
R. N.
, and
Thackray
,
G.
, 1968, “
The Use of a Mathematical Model to Describe Isothermal Stress-Strain Curves in Glassy Thermoplastics
,”
Proc. R. Soc. London, Ser. A
1364-5021,
302
, pp.
453
472
.
22.
Gent
,
A.
, 1996, “
A New Constitutive Relation for Rubber
,”
Rubber Chem. Technol.
0035-9475,
69
(
1
), pp.
59
61
.
23.
Arruda
,
E. M.
, and
Boyce
,
M. C.
, 1993, “
A Three-Dimensional Constitutive Model for the Large Stretch Behavior of Rubber Elastic Materials
,”
J. Mech. Phys. Solids
0022-5096,
41
(
2
), pp.
389
412
.
24.
Arruda
,
E. M.
, and
Boyce
,
M. C.
, 1993, “
Evolution of Plastic Anisotropy in Amorphous Polymers During Finite Straining
,”
Int. J. Plast.
0749-6419,
9
(
6
), pp.
697
720
.
25.
Arruda
,
E. M.
,
Boyce
,
M. C.
, and
Quintus-Bosz
,
H.
, 1993, “
Effect of Initial Anisotropy on the Finite Strain Deformation-Behavior of Glassy-Polymers
,”
Int. J. Plast.
0749-6419,
9
, pp.
783
811
.
26.
Lee
,
E. H.
, 1969, “
Elastic-Plastic Deformation at Finite Strains
,”
ASME J. Appl. Mech.
0021-8936,
56
(
1
), pp.
1
6
.
27.
Boyce
,
M. C.
,
Weber
,
G. G.
, and
Parks
,
D. M.
, 1989, “
On the Kinematics of Finite Strain Plasticity
,”
J. Mech. Phys. Solids
0022-5096,
37
(
5
), pp.
647
665
.
You do not currently have access to this content.