This paper is aimed at identifying key microstructural parameters that play important roles in the failure initiation of polycrystalline Ti-6242 subjected to creep and dwell loading. A finite element model, incorporating rate dependent elastocrystal plasticity, is developed for analyzing evolving variables in material microstructure. The crystal plasticity parameters are characterized by a combination of microtesting, orientation imaging microscopy, computational simulations, and minimization process involving Genetic algorithms (Ga). Accurate phase volume fractions and orientation distributions that are statistically equivalent to those observed in orientation imaging microscope scans are incorporated in the computational model of polycrystalline Ti-6242 for constant strain rate, creep, and dwell tests. The computational model is used for the identification of possible microstructural variables that may result in local crack initiation. Basal normal stress, equivalent plastic strain, and stress in loading direction are considered as candidate parameters, of which the former is chosen as most probable from results of creep and dwell experiments and simulations. Creep induced load shedding phenomena is observed to lead to high value stresses that cause failure. The role of grain orientation with respect to the loading axis and misorientation with its neighbors, in causing load shedding and stress localizations is explored.

1.
Sinha
,
V.
,
Mills
,
M. J.
, and
Williams
,
J. C.
, 2004,“
Understanding the Contributions of Normal-fatigue and Static-loading to the Dwell-fatigue in a Near-alpha Titanium Alloy
,”
Metall. Trans. A
0360-2133,
35A
, pp.
3141
3148
.
2.
Imam
,
M. A.
, and
Gilmore
,
C. M.
, 1979, “
Room Temperature Creep of Ti-6Al-4V
,”
Metall. Trans. A
0360-2133,
10A
, pp.
419
425
.
3.
Chu
,
H. P.
, 1970, “
Room Temperature Creep and Stress Relaxation of a Titanium Alloy
,”
J. Mater.
0022-2453,
5
, pp.
633
642
.
4.
Odegard
,
B. C.
, and
Thompson
,
A. W.
, 1974, “
Low Temperature Creep of Ti-6Al-4V
,”
Metall. Trans.
0026-086X,
5
, pp.
1207
1213
.
5.
Miller
,
W. H.
,
Chen
,
R. T.
, and
Starke
,
E. A.
, 1987, “
Microstructure, Creep and Tensile Deformation in Ti-6Al-2Nb-1Ta-0.8Mo
,”
Metall. Trans. A
0360-2133,
18A
, pp.
1451
1467
.
6.
Bache
,
M. R.
, 2003, “
A Review of Dwell Sensitive Fatigue in Titanium Alloys: The Role of Microstructure, Texture and Operating Conditions
,”
Int. J. Fatigue
0142-1123,
25
, pp.
1079
1087
.
7.
Rokhlin
.
S.
, 2005,
The Ohio State University
, Columbus, OH, unpublished.
8.
Williams
,
J.
,
Mills
,
M. J.
,
Rokhlin
,
S.
, and
Rokhlin
,
S.
, 2005, “
The Evaluation of Cold Dwell Fatigue in Ti-6242
”, FAA Report Summary,
The Ohio State University
, Columbus, OH.
9.
Woodfield
,
A. P.
,
Gorman
,
M. D.
,
Corderman
,
R. R.
,
Sutliff
,
J. A.
, and
Yamron
,
B.
, 1996, “
Effect of Microstructure on Dwell Fatigue Behaviour of Ti-6242
,”
Titanium ’95 Science and Technology
,
P. A.
Blenkinsop
,
W. J.
Evans
, and
H. M.
Flower
, eds.,
The Institute of Materials
,
London
, UK, pp.
1116
1124
.
10.
Deka
,
D.
,
Joseph
,
D. S.
,
Ghosh
,
S.
, and
Mills
,
M. J.
, 2005, ”
Crystal Plasticity Modeling of Deformation and Creep in Polycrystalline Ti-6242
,”
Metall. Mater. Trans. A
1073-5623 (in press).
11.
Hasija
,
V.
,
Ghosh
,
S.
,
Mills
,
M. J.
, and
Joseph
,
D. S.
, 2003, “
Modeling Deformation and Creep in Ti-6Al alloys with Experimental Validation
,”
Acta Mater.
1359-6454,
51
, pp.
4533
4549
.
12.
Norfleet
,
D.
, 2005,
The Ohio State University
, Columbus, OH, unpublished.
13.
Balasubramanian
,
S.
, 1998, “
Polycrystalline Plasticity: Application to Deformation Processing of Lightweight Metals
.” Ph.D. dissertation, MIT, Cambridge, MA.
14.
Savage
,
M. F.
, 2000, “
Microstructural and Mechanistic Study of Low Temperature Creep and Dwell Fatigue in Single Colony alpha/beta Titanium Alloys
.” Ph.D. dissertation, OSU, Columbus, OH.
15.
Suri
,
S.
,
Vishwanathan
,
G. B.
,
Neeraj
,
T.
,
Hou
,
D. H.
, and
Mills
,
M. J.
, 1999, “
Room Temperature Deformation and Mechanisms of Slip Transmission in Oriented Single-Colony Crystals of an α∕β Titanium Alloy
,”
Acta Mater.
1359-6454,
47
, pp.
1019
1034
.
16.
Taylor
,
G. I.
, 1938, “
Plastic Strain in Metals
,”
J. Inst. Met.
0020-2975,
62
, pp.
307
324
.
17.
Kalidindi
,
S. R.
,
Bronkhorst
,
C. A.
, and
Anand
,
L.
, 1992, “
Crystallographic Texture Evolution in Bulk Deformation Processing of FCC Metals
,”
J. Mech. Phys. Solids
0022-5096,
40
, pp.
537
569
.
18.
Bronkhorst
,
C. A.
,
Kalidindi
,
S. R.
, and
Anand
,
L.
, 1992, “
Polycrystalline Plasticity and the Evolution of Crystallographic Texture in FCC Metals
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
341
, pp.
443
477
.
19.
Xie
,
C. L.
,
Ghosh
,
S.
, and
Groeber
,
M.
, 2004, “
Modeling Cyclic Deformation of HSLA Steels Using Crystal Plasticity
,”
J. Eng. Mater. Technol.
0094-4289,
126
, pp.
339
352
.
20.
Kothari
,
M.
, and
Anand
,
L.
, 1998, “
Elasto-Viscoplastic Constitutive Equations for Polycrystalline Metals: Application to Tantalum
,”
J. Mech. Phys. Solids
0022-5096,
46
, pp.
51
67
.
21.
Harren
,
S.
,
Lowe
,
T. C.
,
Asaro
,
R. J.
, and
Needleman
,
A.
, 1989, “
Analysis of Large-Strain Shear in Rate-Dependent Face-Centred Cubic Polycrystals: Correlation of Micro- and Macromechanics
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
328
, pp.
443
500
.
22.
MSC-MARC Reference Manuals, 2005, MSC, Software Corporation.
23.
Goldberg
,
D. E.
, 1989, “
Genetic Algorithm in Search Optimization and Machine Learning
,”
Addison Wesley
, Boston.
24.
Roundy
,
D.
,
Krenn
,
C. R.
,
Cohen
,
Marvin L.
, and
Morris
,
J. W.
, 2001, “
The Ideal Strength of Tungsten
,”
Philos. Mag. A
0141-8610,
81
, pp.
1725
1747
.
25.
Xie
,
C. L.
, and
Nakamachi
,
E.
, 2002, “
The Effect of Crystallographic Textures on the Formability of High-strength Steel Sheets
,”
J. Mater. Process. Technol.
0924-0136,
122
, pp.
104
111
.
26.
Kumar
,
A.
, and
Dawson
,
P. R.
, 1998, “
Modeling Crystallographic Texture Evolution with Finite Elements over Neo-Eulerian Orientation Spaces
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
153
, pp.
259
302
.
27.
Kocks
,
U. F.
,
Tomé
,
C. N.
, and
Wenk
,
H. R.
, 1998, “
Texture and Anisotropy: Preferred Orientations in Polycrystals and Their Effect on Materials Properties
,”
Cambridge University Press
, Cambridge.
28.
Bache
,
M. R.
, and
Evans
,
W. J.
, 2003, “
Dwell Sensitive Fatigue Response of Titanium Alloys for Power Plant Applications
,”
J. Eng. Gas Turbines Power
0742-4795,
125
, pp.
241
245
.
You do not currently have access to this content.