Multiaxial fatigue under variable amplitude loading is investigated using Kandil et al.’s parameter, rainflow cycle counting on the shear strain history, and the Miner-Palmgren damage rule. Fatigue data are obtained on tubular specimens of S45C steel under proportional and nonproportional tension-torsion loading. The approaches using the maximum shear strain range (Δγmax) plane and the maximum damage (Dmax) plane as the critical plane are investigated. The damage is computed for each reversal or for each cycle. The results show that both Δγmax and Dmax approaches yield acceptable fatigue lives irrespective of the damage computation method. Damage computation for each reversal tends to shift fatigue life toward the nonconservative side for some nonproportional loading. It is concluded that the overall procedure used in this study is viable for multiaxial life prediction under variable amplitude loading for the test material.

1.
Kremple, E., “The Influence of State of Stress on Low-Cycle Fatigue of Structural Materials: A Literature Survey and Interpretive Report,” ASTM STP 549, American Society for Testing Materials, 1974, pp.1–46.
2.
Garud
Y. S.
, “
Multiaxial Fatigue: A Survey of the State of the Art
,”
Journal of Testing and Evaluation
, Vol.
9
, No.
3
,
1981
, pp.
165
178
.
3.
You
Bong-Ryul
, and
Lee
Soon-Bok
, “
A Critical Review on Multiaxial Fatigue Assessments of Metals
,”
Internal Journal of Fatigue
, Vol.
18
, No.
4
,
1996
, pp.
235
244
.
4.
Burns, A., “Fatigue Loading in Flights: Loads in the Tailplane and Fin of a Varsity,” Aeronautical Research Council Technical Report C.P. 256, London, 1956.
5.
Matsuishi, M., and Endo, T., “Fatigue of Metals Subjected to Varying Stress,” presented at Japan Society of Mechanical Engineers, Fukuoka, Japan, Mar. 1968.
6.
Dowling
N. E.
, “
Fatigue Failure Predictions for Complicated Stress-Strain Histories
,”
Journal of Materials
, Vol.
7
, No.
1
,
1972
, pp.
71
87
.
7.
Kim, K. S., “A Method of Multiaxial Fatigue Life Prediction under General Loading Conditions,” TIS Report #R83AEB563, General Electric Aircraft Engines, Cinicinnati, Ohio, 1983.
8.
Slavik, D., IR&D report, General Electric Aircraft Engines, Cincinnati, Ohio, 1989.
9.
Bannantine, J. A., and Socie, D. F., “A Variable Amplitude Multiaxial Fatigue Life Predication Method,” ESIS10, K. Kussmaul, D. McDiarmid, and D. Socie, eds., Mechanical Engineering Publications, London, 1991, pp. 35–51.
10.
Wang
C. H.
, and
Brown
M. W.
, “
A Path-Independent Parameter for Fatigue under Proportional and Non-Proportional Loading
,”
Fatigue and Fracture in Engineering Materials and Structures
, Vol.
16
, No.
12
,
1993
, pp.
1285
1298
.
11.
Kandil, F. A., Brown, M. W., and Miller, K. J., “Biaxial Low-Cycle Fatigue Fracture of 316 Stainless Steel at Elevated Temperatures,” Book 280, The Metals Society, London, 1982, pp. 203–210.
12.
Brown
M. W.
, and
Miller
K. J.
, “
A Theory for Fatigue under Multiaxial Stress-Strain Conditions
,”
Proc. Inst. Mech. Engrs.
, Vol.
187, 65/73
,
1973
, pp.
745
755
.
13.
Jordan, E. H., Brown, M. W., and Miller, K. J., “Fatigue under Severe Non-proportional Loading,” Multiaxial Fatigue, ASTM STP 853, by K. J. Miller and M. W. Brown, eds., American Society for Testing Materials, 1985, pp. 569–585.
14.
Wang
C. H.
, and
Brown
M. W.
, “
Life Prediction Techniques for Variable Amplitude Multiaxial Fatigue—Part 1: Theories
,”
ASME JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY
, Vol.
118
,
1996
, pp.
367
370
.
15.
Wang
C. H.
, and
Brown
M. W.
, “
Life Prediction Techniques for Variable Amplitude Multiaxial Fatigue—Part2: Comparison with Experimental Results
,”
ASME JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY
, Vol.
118
,
1996
, pp.
371
374
.
16.
Leese, G. E., and Morrow, J., “Low Cycle Fatigue Properties of a 1045 Steel in Torsion,” Multiaxial Fatigue, ASTM STP 853, K. J. Miller and M. W. Brown, eds., American Society for Testing Materials, 1985, pp. 482–496.
17.
Socie
D.
, “
Multiaxial Fatigue Damage Models
,”
ASME JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY
, Vol.
109
,
1987
, pp.
293
298
.
18.
Hua
C. T.
, and
Socie
D. F.
, “
Fatigue Damage in 1045 Steel under Constant Amplitude Biaxial Loading
,”
Fatigue Fract. Engng. Mater. Struct.
, Vol.
7
,
1984
, pp.
165
179
.
19.
Hua
C. T.
, and
Socie
D. F.
, “
Fatigue Damage in 1045 Steel under Variable Amplitude Biaxial Loading
,”
Fatigue Fract. Engng. Mater. Struct.
, Vol.
8
,
1985
, pp.
101
114
.
20.
Bannantine, J. A., and Socie, D. F., “Observations of Cracking Behavior in Tension and Torsion Low Cycle Fatigue,” Low Cycle Fatigue, ASTM STP 1942, H. D. Solomon, G. R. Halford, L. R. Kaisand, and B. N. Leis, Eds., American Society for Testing Materials, Philadelphia, 1988, pp. 899–921.
21.
Fatemi
A.
, and
Socie
D. E.
, “
A Critical Plane Approach to Multiaxial Fatigue Damage Including Out-of-Phase Loading
,”
Fatigue Fract. Engng. Mater. Struct.
, Vol.
11
, No.
3
,
1988
, pp.
149
165
.
22.
Okawa
I.
,
Takahashi
H.
,
Moriwaki
M.
, and
Misumi
M.
, “
A Study on Fatigue Crack Growth Under Out-of-Phase Combined Loadings
,”
Fatigue Fract. Engng. Mater. Struct.
, Vol.
20
, No.
6
,
1997
, pp.
929
940
.
23.
Kanazawa, K., Miller, K. J., and Brown, M. W., “Low-Cycle Fatigue under Out-of-Phase Loading Conditions,” ASME JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY, July 1977, pp. 222–228.
24.
Morrow, JoDean, “Fatigue Properties of Metals,” drafted in 1964 for SAE Special Publication 339.
This content is only available via PDF.
You do not currently have access to this content.