Abstract

Improving the rigidity of the process system in the cutting region of thin-walled parts is a challenging problem to ensure machining accuracy. For limited structural space, the use of ice support is an effective method. However, ice and workpiece constitute a completely new process system, which generates a complex process response under milling forces. Based on the Kirchhoff–Love thin-wall small-deformation assumption and the Winkler model for describing the inverse support of ice on cylindrical shell thin-walled parts (CSTWPs), a new prediction model is developed to predict the deflection of CSTWP under ice support. In the model, by introducing the displacement function in the form of annular triangular series, the analytical solution of the displacement is given for the cylindrical shell with nonsimply supported edges at both ends under ice support. A finite element model for milling CSTWP under ice support is developed, which takes into account the nonlinear behavior of ice and the complex mechanical behavior of the ice/workpiece interface. Based on this finite element model and the corresponding milling experiments, the accuracy and validity of the established model are verified. The work provides a theoretical basis for the prediction of the deformation of CSTWP under ice support.

References

1.
Liu
,
H. B.
,
Wang
,
C. X.
,
Li
,
T.
,
Bo
,
Q. L.
,
Liu
,
K.
, and
Wang
,
Y. Q.
,
2022
, “
Fixturing Technology and System for Thin-Walled Parts Machining: A Review
,”
Front. Mech. Eng.
,
17
(
4
), p.
55
.
2.
Liu
,
H. B.
,
Wang
,
C. X.
,
Han
,
L. S.
,
Wang
,
S. J.
,
Liu
,
K.
, and
Wang
,
Y. Q.
,
2021
, “
The Influence of Ice-Based Fixture on Suppressing Machining-Induced Deformation of Cantilever Thin-Walled Parts: A Novel and Green Fixture
,”
Int. J. Adv. Manuf. Technol.
,
117
(
1–2
), pp.
329
341
.
3.
Mironova
,
A.
,
2018
, “
Effects of the Influence Factors in Adhesive Workpiece Clamping With Ice: Experimental Study and Performance Evaluation for Industrial Manufacturing Applications
,”
Int. J. Adv. Manuf. Technol.
,
99
(
1–4
), pp.
137
160
.
4.
Wang
,
Y. Q.
,
Gan
,
Y. Q.
,
Liu
,
H. B.
,
Han
,
L. S.
,
Wang
,
J. Y.
, and
Liu
,
K.
,
2020
, “
Surface Quality Improvement in Machining an Aluminum Honeycomb by Ice Fixation
,”
Chin. J. Mech. Eng.
,
33
(
1
), pp.
162
169
.
5.
Jiang
,
S. W.
,
Wang
,
Y. Q.
,
Liu
,
K.
,
Wu
,
X. H.
,
Yang
,
Z. J.
,
Yang
,
Y. B.
,
Yu
,
Q. B.
, and
Yang
,
X. L.
,
2022
, “
Research on Ice Fixation and Low Damage Machining Technology of Superalloy Honeycomb Cores
,”
Chin. J. Mech. Eng.
,
33
(
05
), pp.
577
582
.
6.
Liu
,
H. B.
,
Wang
,
C. X.
,
Li
,
P. C.
,
Wang
,
S. J.
,
Li
,
X.
, and
Wang
,
Y. Q.
,
2022
, “
Suppression Mechanism and Prediction Model of Top Burr in Metal Milling Under Ice Boundary Constraint
,”
ASME J. Manuf. Sci. Eng.
,
144
(
12
), p.
121011
.
7.
Liu
,
H. B.
,
Wang
,
C. X.
,
Zeng
,
L. Q.
,
Li
,
P. C.
,
Wang
,
S. J.
,
Sun
,
K. Y.
, and
Wang
,
Y. Q.
,
2023
, “
Prediction of Icing Interface Normal Stress Response for Thin-Walled Parts Machining With Ice-Based Fixturing (IBF)
,”
Thin-Walled Struct.
,
188
, p.
110807
.
8.
Li
,
W. T.
,
Wang
,
L. P.
, and
Yu
,
G.
,
2021
, “
Force-Induced Deformation Prediction and Flexible Error Compensation Strategy in Flank Milling of Thin-Walled Parts
,”
J. Mater. Process. Technol.
,
297
, p.
117258
.
9.
Chen
,
W. F.
,
Xue
,
J. B.
,
Tang
,
D. B.
,
Chen
,
H.
, and
Qu
,
S. P.
,
2009
, “
Deformation Prediction and Error Compensation in Multilayer Milling Processes for Thin-Walled Parts
,”
Int. J. Mach. Tools Manuf.
,
49
(
11
), pp.
859
864
.
10.
Fei
,
J. X.
,
Lin
,
B.
,
Xiao
,
J. L.
,
Ding
,
M.
,
Yan
,
S.
,
Zhang
,
X. F.
, and
Zhang
,
J.
,
2018
, “
Investigation of Moving Fixture on Deformation Suppression During Milling Process of Thin-Walled Structures
,”
J. Manuf. Processes
,
32
, pp.
403
411
.
11.
Chen
,
Z. T.
,
Yue
,
C. X.
,
Liang
,
S. Y.
,
Liu
,
X. L.
,
Li
,
H. S.
, and
Li
,
X. C.
,
2020
, “
Iterative From Error Prediction for Side-Milling of Thin-Walled Parts
,”
Int. J. Adv. Manuf. Technol.
,
107
(
9–10
), pp.
4173
4189
.
12.
Shi
,
D. M.
,
Huang
,
T.
,
Zhang
,
X. M.
, and
Ding
,
H.
,
2022
, “
An Explicit Coupling Model for Accurate Prediction of Force-Induced Deflection in Thin-Walled Workpiece Milling
,”
ASME J. Manuf. Sci. Eng.
,
144
(
8
), p.
081005
.
13.
Ge
,
G. Y.
,
Xiao
,
Y. K.
,
Feng
,
X. B.
, and
Du
,
Z. C.
,
2022
, “
An Efficient Prediction Method for the Dynamic Deformation of Thin-Walled Parts in Flank Milling
,”
Comput. Aided Des.
,
152
, p.
103401
.
14.
Li
,
P. F.
,
Liu
,
Y.
,
Gong
,
Y. D.
,
Li
,
L. L.
,
Liu
,
K.
, and
Sun
,
Y.
,
2018
, “
New Deformation Prediction of Micro Thin-Walled Structures by Iterative FEM
,”
Int. J. Adv. Manuf. Technol.
,
95
(
5–8
), pp.
2027
2040
.
15.
Zhang
,
Z.
,
Li
,
H.
,
Liu
,
X.
,
Zhang
,
W.
, and
Meng
,
G.
,
2018
, “
Chatter Mitigation for the Milling of Thin-Walled Workpiece
,”
Int. J. Mech. Sci.
,
138–139
, pp.
262
271
.
16.
Wan
,
S.
,
Jin
,
X.
,
Maroju
,
N. K.
, and
Hong
,
J.
,
2019
, “
Effect of Vibration Assistance on Chatter Stability in Milling
,”
Int. J. Mach. Tools Manuf.
,
145
, p.
103432
.
17.
Wang
,
S.Q.
,
He
,
C.L.
,
Li
,
J.G.
, and
Wang
,
J.
,
2021
, “
Vibration-Free Surface Finish in the Milling of a Thin-Walled Cavity Part Using a Corn Starch Suspension
,”
J. Mater. Process. Technol.
,
290
, p.
116980
.
18.
Tian
,
Y.
,
Xiao
,
J.
,
Liu
,
S.
,
Ma
,
S.
,
Liu
,
H.
, and
Huang
,
T.
,
2023
, “
Vibration and Deformation Suppression in Mirror Milling of thin-walled workpiece through a magnetic follow-up support fixture
,”
J. Manuf. Process.
,
99
, pp.
168
183
.
19.
Du
,
J.
, and
Long
,
X.
,
2022
, “
Chatter Suppression for Milling of Thin-Walled Workpieces Based on Active Modal Control
,”
J. Manuf. Process.
,
84
, pp.
1042
1053
.
20.
Kaneko
,
K.
,
Shimizu
,
J.
, and
Shirase
,
K.
,
2023
, “
A Voxel-Based End Milling Simulation Method to Analyze the Elastic Deformation of a Workpiece
,”
ASME J. Manuf. Sci. Eng.
,
145
(
1
), p.
011005
.
21.
Ivannikov
,
V.
,
Tiago
,
C.
, and
Pimenta
,
P. M.
,
2014
, “
On the Boundary Conditions of the Geometrically Nonlinear Kirchhoff-Love Shell Theory
,”
Int. J. Solids Struct.
,
51
(
18
), pp.
3101
3112
.
22.
Semenov
,
A. A.
,
2016
, “
Strength and Stability of Geometrically Nonlinear Orthotropic Shell Structures
,”
Thin-Walled Struct.
,
106
, pp.
428
436
.
23.
Chen
,
G.
,
Coleman
,
M. P.
,
Ma
,
D. W.
,
Morris
,
P. J.
, and
You
,
P. H.
,
2000
, “
The Fundamental Solution for Shallow Circular Cylindrical Shells—Part I: Derivations
,”
Int. J. Eng. Sci.
,
38
(
11
), pp.
1235
1257
.
24.
Amiri
,
S. N.
, and
Rasheed
,
H. A.
,
2012
, “
Plastic Buckling of Moderately Thick Hemispherical Shells Subjected to Concentrated Load on Top
,”
Int. J. Eng. Sci.
,
50
(
1
), pp.
151
165
.
25.
Chen
,
Z. P.
,
Fan
,
H. G.
,
Cheng
,
J.
,
Jiao
,
P.
,
Xu
,
F.
, and
Zheng
,
C. C.
,
2018
, “
Buckling of Cylindrical Shells With Measured Settlement Under Axial Compression
,”
Thin-Walled Struct.
,
123
, pp.
351
359
.
26.
Sun
,
G. X.
,
Zhu
,
S. B.
,
Teng
,
R. M.
,
Sun
,
J. B.
,
Zhou
,
Z. H.
, and
Xu
,
X. S.
,
2022
, “
Post-buckling Analysis of GPLs Reinforced Porous Cylindrical Shells Under Axial Compression and Hydrostatic Pressure
,”
Thin-Walled Struct.
,
172
, p.
108834
.
27.
Ventsel
,
E.
,
Krauthammer
,
T.
, and
Carrera
,
E.
,
2002
, “
Thin Plates and Shells: Theory, Analysis, and Applications
,”
ASME Appl. Mech. Rev.
,
55
(
4
), pp.
B72
B73
.
28.
Tang
,
A. J.
, and
Liu
,
Z. Q.
,
2008
, “
Deformations of Thin-Walled Plate Due to Static end Milling Force
,”
J. Mater. Process. Technol.
,
206
(
1–3
), pp.
345
351
.
29.
Jagadeesh
,
S. K.
,
Ramesh
,
C. S.
,
Mallikarjuna
,
J. M.
, and
Keshavamurthy
,
R.
,
2010
, “
Prediction of Cooling Curves During Solidification of Al 6061-SiCp Based Metal Matrix Composites Using Finite Element Analysis
,”
J. Mater. Process. Technol.
,
210
(
4
), pp.
618
623
.
30.
Mellor
,
M.
, and
Cole
,
D. M.
,
1982
, “
Deformation and Failure of Ice Under Constant Stress or Constant Strain-Rate
Sci. Tech.
,
5
(
3
), pp.
201
219
.
31.
Pernas-Sanchez
,
J.
,
Pedroche
,
D. A.
,
Varas
,
D.
,
Lopez-Puente
,
J.
, and
Zaera
,
R.
,
2012
, “
Numerical Modeling of Ice Behavior Under High Velocity Impacts
,”
Int. J. Solids Struct.
,
49
(
14
), pp.
1919
1927
.
32.
Carney
,
K. S.
,
Benson
,
D. J.
,
DuBois
,
P.
, and
Lee
,
R.
,
2006
, “
A Phenomenological High Strain Rate Model With Failure for ice
,”
Int. J. Solids Struct.
,
43
(
25–26
), pp.
7820
7839
.
33.
Schulson
,
E. M.
,
2001
, “
Brittle Failure of Ice
,”
Eng. Fract. Mech.
,
68
(
17–18
), pp.
1839
1887
.
34.
Ince
,
S. T.
,
Kumar
,
A.
, and
Paik
,
J. K.
,
2017
, “
A New Constitutive Equation on Ice Materials
,”
Ships Offshore Struct.
,
12
(
5
), pp.
610
623
.
35.
Zhang
,
F. L.
,
Zhu
,
Z. W.
,
Fu
,
T. T.
, and
Jia
,
J. X.
,
2020
, “
Damage Mechanism and Dynamic Constitutive Model of Frozen Soil Under Uniaxial Impact Loading
,”
Mech. Mater.
,
140
, p.
103217
.
36.
Ma
,
D. Y.
,
Li
,
X.
,
Manes
,
A.
, and
Li
,
Y. L.
,
2023
, “
Numerical Modelling of Ice: Mechanical Behaviour of Ice Under High Strain Rates
,”
Int. J. Impact Eng.
,
172
, p.
104375
.
37.
Mi
,
Y.
,
Crisfield
,
M. A.
,
Davies
,
G. A. O.
, and
Hellweg
,
H. B.
,
1998
, “
Progressive Delamination Using Interface Elements
,”
J. Compos Mater.
,
32
(
14
), pp.
1246
1272
.
38.
Riahi
,
M. M.
,
Marceau
,
D.
,
Laforte
,
C.
, and
Perron
,
J.
,
2011
, “
The Experimental/Numerical Study to Predict Mechanical Behaviour at the Ice/Aluminium Interface
,”
Cold Reg. Sci. Technol.
,
65
(
2
), pp.
191
202
.
39.
Tahmasebi
,
E.
,
Albertelli
,
P.
,
Lucchini
,
T.
,
Monno
,
M.
, and
Mussi
,
V.
,
2019
, “
CFD and Experimental Analysis of the Coolant Flow in Cryogenic Milling
,”
Int. J. Mach. Tools Manuf.
,
140
, pp.
20
33
.
You do not currently have access to this content.