Abstract

Bioprinting using algae cells has many potential applications including tissue engineering, environmental engineering, contaminant removal from water, and establishing space habitats. In extrusion-based bioprinting, bioink needs to be crosslinked after being extruded from the nozzle for printed constructs to first achieve and then maintain adequate shape fidelity. Crosslinking methods used in reported studies on algae-contained bioinks include both photo-crosslinking and ionic crosslinking. This paper reports a preliminary study where the coaxial nozzle-based in situ ionic crosslinking method was used in bioprinting of algae cells without additional crosslinking of printed samples for the first time. In comparison with photo-crosslinking, in situ ionic crosslinking can minimize bioink preparation time and complexity, eliminate cells’ exposure to ultraviolet radiation, and reduce the number of post-printing steps. In this preliminary study, the bioink was an alginate solution containing algae (Chlorella vulgaris) cells, and the crosslinking solution was a calcium chloride solution. The coaxial nozzle had two nozzles: inner and outer nozzles. In printing, the bioink was delivered through the outer nozzle while the crosslinking solution was delivered through the inner nozzle. The shape of the printed samples was a square block with dimensions of 30 × 30 × 10 mm. It was observed that, 9 days after printing, the algae cells grew within the printed samples, and the samples could keep their shapes relatively well. Many knowledge gaps exist regarding the effects of input variables in bioprinting of algae cells using this method. This paper discusses future research directions to fill these knowledge gaps.

References

1.
Lode
,
A.
,
Krujatz
,
F.
,
Brüggemeier
,
S.
,
Quade
,
M.
,
Schütz
,
K.
,
Knaack
,
S.
,
Weber
,
J.
,
Bley
,
T.
, and
Gelinsky
,
M.
,
2015
, “
Green Bioprinting: Fabrication of Photosynthetic Algae-Laden Hydrogel Scaffolds for Biotechnological and Medical Applications
,”
Eng. Life Sci.
,
15
(
2
), pp.
177
183
.
2.
Zhao
,
S.
,
Guo
,
C.
,
Kumarasena
,
A.
,
Omenetto
,
F. G.
, and
Kaplan
,
D. L.
,
2019
, “
3D Printing of Functional Microalgal Silk Structures for Environmental Applications
,”
ACS Biomater. Sci. Eng.
,
5
(
9
), pp.
4808
4816
.
3.
Malik
,
S.
,
Hagopian
,
J.
,
Mohite
,
S.
,
Lintong
,
C.
,
Stoffels
,
L.
,
Giannakopoulos
,
S.
,
Beckett
,
R.
, et al
,
2020
, “
Robotic Extrusion of Algae-Laden Hydrogels for Large-Scale Applications
,”
Glob. Chall.
,
4
(
1
), p.
1900064
.
4.
Thakare
,
K.
,
Jerpseth
,
L.
,
Pei
,
Z.
,
Tomlin
,
B.
, and
Qin
,
H.
,
2021
, “
Three-Dimensional Printing of Hydrogel Filters Containing Algae Cells for Copper Removal From Contaminated Water
,”
ASME J. Manuf. Sci. Eng.
,
143
(
10
), p.
104502
.
5.
Black
,
J.
,
Slapakova
,
L.
, and
Martin
,
K. F.
,
2022
,
Uses of Space Out to 2050
,
RAND Corporation
,
Santa Monica, CA
.
6.
Balasubramanian
,
S.
,
Yu
,
K.
,
Meyer
,
A. S.
,
Karana
,
E.
, and
Aubin-Tam
,
M. E.
,
2021
, “
Bioprinting of Regenerative Photosynthetic Living Materials
,”
Adv. Funct. Mater.
,
31
(
31
).
7.
Schwab
,
A.
,
Levato
,
R.
,
D’Este
,
M.
,
Piluso
,
S.
,
Eglin
,
D.
, and
Malda
,
J.
,
2020
, “
Printability and Shape Fidelity of Bioinks in 3D Bioprinting
,”
Chem. Rev.
,
120
(
19
), pp.
11028
11055
.
8.
Gillispie
,
G.
,
Prim
,
P.
,
Copus
,
J.
,
Fisher
,
J.
,
Mikos
,
A. G.
,
Yoo
,
J. J.
,
Atala
,
A.
, and
Lee
,
S. J.
,
2020
, “
Assessment Methodologies for Extrusion-Based Bioink Printability
,”
Biofabrication
,
12
(
2
), p.
022003
.
9.
Thakare
,
K.
,
Jerpseth
,
L.
,
Pei
,
Z.
, and
Qin
,
H.
,
2022
, “
Applying Layer-by-Layer Photo-Crosslinking in Green Bioprinting: Shape Fidelity and Cell Viability of Printed Hydrogel Constructs Containing Algae Cells
,”
ASME J. Manuf. Sci. Eng.
,
144
(
9
), p.
094502
.
10.
Thakare
,
K.
,
Jerpseth
,
L.
,
Pei
,
Z.
, and
Qin
,
H.
,
2022
, “
Green Bioprinting With Layer-by-Layer Photo-Crosslinking: A Designed Experimental Investigation on Shape Fidelity and Cell Viability of Printed Constructs
,”
J. Manuf. Mater. Process.
,
6
(
2
), p.
45
.
11.
Wang
,
X.
,
Yang
,
C.
,
Yu
,
Y.
, and
Zhao
,
Y.
,
2022
, “
In Situ 3D Bioprinting Living Photosynthetic Scaffolds for Autotrophic Wound Healing
,”
Research (Wash D C)
,
2022
, p.
9794745
.
12.
Thakare
,
K.
,
Jerpseth
,
L.
,
Qin
,
H.
, and
Pei
,
Z.
,
2021
, “
Bioprinting Using Algae: Effects of Extrusion Pressure and Needle Diameter on Cell Quantity in Printed Samples
,”
ASME J. Manuf. Sci. Eng.
,
143
(
1
), p.
014501
.
13.
Panchal
,
N.
,
Patel
,
D.
, and
Shah
,
N.
,
2017
, “
Synthesis of Hydrogels
,”
Proceedings of the 4th International Conference on Multidisciplinary Research & Practice (4ICMRP-2017)
,
Ahmedabad, Gujarat, India
,
Dec. 22
, pp.
64
72
.
14.
Ullah
,
F.
,
Othman
,
M. B. H.
,
Javed
,
F.
,
Ahmad
,
Z.
, and
Akil
,
H. M.
,
2015
, “
Classification, Processing and Application of Hydrogels: A Review
,”
Mater. Sci. Eng. C
,
57
, pp.
414
433
.
15.
Ji
,
S.
, and
Guvendiren
,
M.
,
2017
, “
Recent Advances in Bioink Design for 3D Bioprinting of Tissues and Organs
,”
Front. Bioeng. Biotechnol.
,
5
, p.
23
.
16.
Kyle
,
S.
,
Jessop
,
Z. M.
,
Al-Sabah
,
A.
, and
Whitaker
,
I. S.
,
2017
, “
‘Printability’ of Candidate Biomaterials for Extrusion Based 3D Printing: State-of-the-Art
,”
Adv. Healthc. Mater.
,
6
(
16
).
17.
Zhang
,
Y.
,
Yu
,
Y.
,
Chen
,
H.
, and
Ozbolat
,
I. T.
,
2013
, “
Characterization of Printable Cellular Micro-fluidic Channels for Tissue Engineering
,”
Biofabrication
,
5
(
2
), p.
025004
.
18.
Perez
,
V. J.
,
2021
,
Investigation of Cell Behavior in 3D Printed Lumen Structures for Capillary Regeneration
,
The University of Texas Rio Grande Valley
,
Edinburg, TX
.
19.
Rahman
,
T. T.
,
2021
,
Bioprinting a 3D Tubular Structure With Vascular Smooth Muscle Cells to Observe the Process Compatibility
,
The University of Texas Rio Grande Valley
,
Edinburg, TX
.
20.
Gao
,
Q.
,
He
,
Y.
,
Fu
,
J.
,
Liu
,
A.
, and
Ma
,
L.
,
2015
, “
Coaxial Nozzle-Assisted 3D Bioprinting With Built-In Microchannels for Nutrients Delivery
,”
Biomaterials
,
61
, pp.
203
215
.
21.
Zhang
,
Y.
,
Yu
,
Y.
,
Akkouch
,
A.
,
Dababneh
,
A.
,
Dolati
,
F.
, and
Ozbolat
,
I. T.
,
2015
, “
In Vitro Study of Directly Bioprinted Perfusable Vasculature Conduits
,”
Biomater. Sci.
,
3
(
1
), pp.
134
143
.
22.
Sun
,
Z.
,
Di
,
Z.
,
Zhang
,
Y.
,
Wen
,
H.
,
Zhang
,
S.
,
Zhang
,
Z.
,
Zhang
,
J.
, and
Yu
,
Z.
,
2023
, “
Photosynthetic Living Fibers Fabrication From Algal-Bacterial Consortia With Controlled Spatial Distribution
,”
ACS Biomater. Sci. Eng.
,
9
(11), pp.
6481
6489
.
23.
Krujatz
,
F.
,
Lode
,
A.
,
Brüggemeier
,
S.
,
Schütz
,
K.
,
Kramer
,
J.
,
Bley
,
T.
,
Gelinsky
,
M.
, and
Weber
,
J.
,
2015
, “
Green Bioprinting: Viability and Growth Analysis of Microalgae Immobilized in 3D-Plotted Hydrogels Versus Suspension Cultures
,”
Eng. Life Sci.
,
15
(
7
), pp.
678
688
.
24.
Ding
,
H.
, and
Chang
,
R.
,
2018
, “
Printability Study of Bioprinted Tubular Structures Using Liquid Hydrogel Precursors in a Support Bath
,”
Appl. Sci.
,
8
(
3
).
25.
Blaeser
,
A.
,
Duarte Campos
,
D. F.
,
Puster
,
U.
,
Richtering
,
W.
,
Stevens
,
M. M.
, and
Fischer
,
H.
,
2016
, “
Controlling Shear Stress in 3D Bioprinting Is a Key Factor to Balance Printing Resolution and Stem Cell Integrity
,”
Adv. Healthc. Mater.
,
5
(
3
), pp.
326
333
.
26.
Chang
,
R.
,
Nam
,
J.
, and
Sun
,
W.
,
2008
, “
Effects of Dispensing Pressure and Nozzle Diameter on Cell Survival From Solid Freeform Fabrication-Based Direct Cell Writing
,”
Tissue Eng. Part A
,
14
(
1
), pp.
41
48
.
27.
Nair
,
K.
,
Gandhi
,
M.
,
Khalil
,
S.
,
Yan
,
K. C.
,
Marcolongo
,
M.
,
Barbee
,
K.
, and
Sun
,
W.
,
2009
, “
Characterization of Cell Viability During Bioprinting Processes
,”
Biotechnol. J.: Healthc. Nutr. Technol.
,
4
(
8
), pp.
1168
1177
.
You do not currently have access to this content.