Abstract

Research applications that rely on commercial directed energy deposition (DED) based metal additive manufacturing (AM) systems are commonly constrained by their inflexibility in handling various non-standard powders, lack of fine system control, and inherent difficulty with sensor integration. In this work, we present the design of a sensing-integrated platform for metal additive manufacturing. A modular design allows easy modification of specific sub-systems, such as laser integration or powder delivery mechanisms, to enable capabilities that are difficult to realize with commercial systems. As an example, we demonstrate DED performance using non-conventional inexpensive powders produced via abrasion and water atomization techniques. System performance is evaluated using integrated sensors and complemented by numerical/ analytical calculations. Based on these results, a nominal operation map combining thermal field with powder flow is generated for determining process parameters suitable for a given material/build combination and can be generally applicable for any DED AM system. In addition to handling non-spherical and alternatively sourced powders, the system capabilities for printing multi-material complex contours are demonstrated.

References

1.
Tofail
,
S. A.
,
Koumoulos
,
E. P.
,
Bandyopadhyay
,
A.
,
Bose
,
S.
,
O’Donoghue
,
L.
, and
Charitidis
,
C.
,
2018
, “
Additive Manufacturing: Scienepsic and Technological Challenges, Market Uptake and Opportunities
,”
Mater. Today
,
21
(
1
), pp.
22
37
.
2.
Wohlers
,
T.
,
Campbell
,
I.
,
Diegel
,
O.
,
Huff
,
R.
, and
Kowen
,
J.
,
2020
,
Wohlers Report 2020: 3D Printing and Additive Manufacturing Global State of the Industry
,
Wohlers Associates
,
Washington, DC
.
3.
Wohlers
,
T.
, and
Gornet
,
T.
,
2014
, “
History of Additive Manufacturing
,”
Wohlers Rep.
,
24
, p.
118
.
4.
Carroll
,
B. E.
,
Otis
,
R. A.
,
Borgonia
,
J. P.
,
Suh
,
J.
,
Dillon
,
R. P.
,
Shapiro
,
A. A.
,
Hofmann
,
D. C.
,
Liu
,
Z.
, and
Beese
,
A. M.
,
2016
, “
Functionally Graded Material of 304L Stainless Steel and Inconel 625 Fabricated by Directed Energy Deposition: Characterization and Thermodynamic Modeling
,”
Acta Mater.
,
108
, pp.
46
54
.
5.
Hofmann
,
D. C.
,
Roberts
,
S.
,
Otis
,
R.
,
Kolodziejska
,
J.
,
Dillon
,
R. P.
,
Suh
,
J.
,
Shapiro
,
A. A.
,
Liu
,
Z.
, and
Borgonia
,
J.
,
2014
, “
Developing Gradient Metal Alloys Through Radial Deposition Additive Manufacturing
,”
Scienepsic Rep.
,
4
(
1
), pp.
1
8
.
6.
Svetlizky
,
D.
,
Das
,
M.
,
Zheng
,
B.
,
Vyatskikh
,
A. L.
,
Bose
,
S.
,
Bandyopadhyay
,
A.
,
Schoenung
,
J. M.
,
Lavernia
,
E. J.
, and
Eliaz
,
N.
,
2021
, “
Directed Energy Deposition (DED) Additive Manufacturing: Physical Characteristics, Defects, Challenges and Applications
,”
Mater. Today
,
49
, pp.
271
295
.
7.
Zhang
,
Y.
,
Jarosinski
,
W.
,
Jung
,
Y. G.
, and
Zhang
,
J.
,
2018
, “Additive Manufacturing Processes and Equipment,”
Additive Manufacturing
,
Elsevier, Butterworth-Heinemann
,
Oxford, UK
, pp.
39
51
.
8.
Melzer
,
D.
,
Džugan
,
J.
,
Koukolíková
,
M.
,
Rzepa
,
S.
, and
Vavřík
,
J.
,
2021
, “
Structural Integrity and Mechanical Properties of the Functionally Graded Material Based on 316L/IN718 Processed by DED Technology
,”
Mater. Sci. Eng.: A.
,
811
, p.
141038
.
9.
Tepylo
,
N.
,
Huang
,
X.
, and
Patnaik
,
P. C.
,
2019
, “
Laser-Based Additive Manufacturing Technologies for Aerospace Applications
,”
Adv. Eng. Mater.
,
21
(
11
), p.
1900617
.
10.
Gibson
,
I.
,
Rosen
,
D.
,
Stucker
,
B.
, and
Khorasani
,
M.
,
2021
, “Directed Energy Deposition,”
Additive Manufacturing Technology
,
Springer
,
New York
, pp.
285
318
.
11.
Gisario
,
A.
,
Kazarian
,
M.
,
Martina
,
F.
, and
Mehrpouya
,
M.
,
2019
, “
Metal Additive Manufacturing in the Commercial Aviation Industry: A Review
,”
J. Manuf. Syst.
,
53
, pp.
124
149
.
12.
Huang
,
Y.
,
Khamesee
,
M. B.
, and
Toyserkani
,
E.
,
2019
, “
A New Physics-Based Model for Laser Directed Energy Deposition (Powder-Fed Additive Manufacturing): From Single-Track to Multi-Track and Multi-Layer
,”
Opt. Laser Technol.
,
109
, pp.
584
599
.
13.
Vundru
,
C.
,
Singh
,
R.
,
Yan
,
W.
, and
Karagadde
,
S.
,
2021
, “
A Comprehensive Analytical-Computational Model of Laser Directed Energy Deposition to Predict Deposition Geometry and Integrity for Sustainable Repair
,”
Int. J. Mech. Sci.
,
211
, p.
106790
.
14.
Wang
,
Q.
,
Li
,
J.
,
Gouge
,
M.
,
Nassar
,
A. R.
, and
Reutzel
,
E. W.
,
2017
, “
Physics-Based Multivariable Modeling and Feedback Linearization Control of Melt-Pool Geometry and Temperature in Directed Energy Deposition
,”
ASME J. Manuf. Sci. Eng.
,
139
(
2
), p.
021013
.
15.
Kats
,
D.
,
Wang
,
Z.
,
Gan
,
Z.
,
Liu
,
W. K.
,
Wagner
,
G. J.
, and
Lian
,
Y.
,
2022
, “
A Physics-Informed Machine Learning Method for Predicting Grain Structure Characteristics in Directed Energy Deposition
,”
Comput. Mater. Sci.
,
202
, p.
110958
.
16.
Khanzadeh
,
M.
,
Chowdhury
,
S.
,
Tschopp
,
M. A.
,
Doude
,
H. R.
,
Marufuzzaman
,
M.
, and
Bian
,
L.
,
2019
, “
In-Situ Monitoring of Melt Pool Images for Porosity Prediction in Directed Energy Deposition Processes
,”
IISE Trans.
,
51
(
5
), pp.
437
455
.
17.
Montazeri
,
M.
,
Yavari
,
R.
,
Rao
,
P.
, and
Boulware
,
P.
,
2018
, “
In-process Monitoring of Material Cross-Contamination Defects in Laser Powder Bed Fusion
,”
ASME J. Manuf. Sci. Eng.
,
140
(
11
), p.
111001
.
18.
Mazumder
,
J.
,
Dutta
,
D.
,
Kikuchi
,
N.
, and
Ghosh
,
A.
,
2000
, “
Closed Loop Direct Metal Deposition: Art to Part
,”
Opt. Lasers Eng.
,
34
(
4–6
), pp.
397
414
.
19.
Xia
,
C.
,
Pan
,
Z.
,
Polden
,
J.
,
Li
,
H.
,
Xu
,
Y.
,
Chen
,
S.
, and
Zhang
,
Y.
,
2020
, “
A Review on Wire Arc Additive Manufacturing: Monitoring, Control and a Framework of Automated System
,”
J. Manuf. Syst.
,
57
, pp.
31
45
.
20.
Jones
,
R.
,
Haufe
,
P.
,
Sells
,
E.
,
Iravani
,
P.
,
Olliver
,
V.
,
Palmer
,
C.
, and
Bowyer
,
A.
,
2011
, “
RepRap–The Replicating Rapid Prototyper
,”
Robotica
,
29
(
1
), pp.
177
191
.
21.
Liu
,
C.
,
Law
,
A. C. C.
,
Roberson
,
D.
, and
Kong
,
Z. J.
,
2019
, “
Image Analysis-Based Closed Loop Quality Control for Additive Manufacturing With Fused Filament Fabrication
,”
J. Manuf. Syst.
,
51
, pp.
75
86
.
22.
Lanzotti
,
A.
,
Del Giudice
,
D. M.
,
Lepore
,
A.
,
Staiano
,
G.
, and
Martorelli
,
M.
,
2015
, “
On the Geometric Accuracy of RepRap Open-Source Three-Dimensional Printer
,”
ASME J. Mech. Des.
,
137
(
10
), p.
101703
.
23.
Dunbar
,
A. J.
,
Nassar
,
A. R.
,
Reutzel
,
E. W.
, and
Blecher
,
J. J.
,
2016
, “
A Real-Time Communication Architecture for Metal Powder Bed Fusion Additive Manufacturing
,”
2016 International Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 8–10
.
24.
Nassar
,
A. R.
,
Reutzel
,
E. W.
,
Brown
,
S. W.
,
Morgan Jr
,
J. P.
,
Morgan
,
J. P.
,
Natale
,
D. J.
,
Tutwiler
,
R. L.
,
Feck
,
D. P.
, and
Banks
,
J. C.
,
2016
,
Laser 3D Manufacturing III
, Vol.
9738
,
SPIE
,
Washington, DC
, pp.
77
90
.
25.
Carter
,
W.
,
Tucker
,
M.
,
Mahony
,
M.
,
Toledano
,
D.
,
Butler
,
R.
,
Roychowdhury
,
S.
,
Nassar
,
A. R.
,
Corbin
,
D. J.
,
Benedict
,
M. D.
, and
Hicks
,
A. S.
,
2019
, “
An Open-Architecture Multi-Laser Research Platform for Acceleration of Large-Scale Additive Manufacturing (ALSAM)
,”
2019 International Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 12–12
, pp.
13
32
.
26.
Bidare
,
P.
,
Maier
,
R. R. J.
,
Beck
,
R. J.
,
Shephard
,
J. D.
, and
Moore
,
A. J.
,
2017
, “
An Open-Architecture Metal Powder Bed Fusion System for In-Situ Process Measurements
,”
Additive Manuf.
,
16
, pp.
177
185
.
27.
Cloutier
,
J. C.
,
2021
, “
Novel Bench top Open-Architecture Direct Energy Deposition System(BenchDED): Design, Manufacturing, Optimization, and Characterization
,” Ph.D. thesis,
University of Guleph
,
Guleph, Canada
.
28.
Zhou
,
Y.
, and
Ning
,
F.
,
2023
, “
Directed Energy Deposition With Coaxial Wire-Powder Feeding: Melt Pool Temperature and Microstructure
,”
ASME J. Manuf. Sci. Eng.
,
145
(
8
), p.
081004
.
29.
Dhami
,
H. S.
, and
Viswanathan
,
K.
,
2020
, “
On the Formation of Spherical Particles in Surface Grinding
,”
International Manufacturing Science and Engineering Conference
, Vol.
84256
.
American Society of Mechanical Engineers
, p.
V001T05A005
.
30.
Dhami
,
H. S.
,
Panda
,
P. R.
, and
Viswanathan
,
K.
,
2022
, “
Production of Powders for Metal Additive Manufacturing Applications Using Surface Grinding
,”
Manuf. Lett.
,
32
, pp.
54
58
.
31.
Mahmood
,
K.
,
Syed
,
W. U. H.
, and
Pinkerton
,
A. J.
,
2011
, “
Innovative Reconsolidation of Carbon Steel Machining Swarf by Laser Metal Deposition
,”
Opt. Lasers Eng.
,
49
(
2
), pp.
240
247
.
32.
Lauwers
,
B.
,
Klocke
,
F.
,
Klink
,
A.
,
Tekkaya
,
A. E.
,
Neugebauer
,
R.
, and
Mcintosh
,
D.
,
2014
, “
Hybrid Processes in Manufacturing
,”
CIRP Ann.
,
63
(
2
), pp.
561
583
.
33.
Sealy
,
M. P.
,
Madireddy
,
G.
,
Williams
,
R. E.
,
Rao
,
P.
, and
Toursangsaraki
,
M.
,
2018
, “
Hybrid Processes in Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
140
(
6
), p.
060801
.
34.
Antony
,
L. V.
, and
Reddy
,
R. G.
,
2003
, “
Processes for Production of High-Purity Metal Powders
,”
JOM
,
55
, pp.
14
18
.
35.
Garg
,
R.
,
Dhami
,
H. S.
,
Panda
,
P. R.
, and
Viswanathan
,
K.
,
2023
, “
Evaluating Gas-Driven Flow Mechanics of Non-Spherical Powders for Directed Energy Deposition
,”
J. Manuf. Process.
,
99
, pp.
260
271
.
36.
Yi
,
L.
,
Gläßner
,
C.
, and
Aurich
,
J. C.
,
2019
, “
How to Integrate Additive Manufacturing Technologies Into Manufacturing Systems Successfully: A Perspective From the Commercial Vehicle Industry
,”
J. Manuf. Syst.
,
53
, pp.
195
211
.
37.
Jaeger
,
J.
, and
Carslaw
,
H.
,
1959
,
Conduction of Heat in Solids
,
Clarendon Press
.
38.
ANSYS Fluent Theory Guide 15.0
,”
ANSYS, Inc
.
Canonsburg, PA
;
2013
.
39.
Morsi
,
S.
, and
Alexander
,
A.
,
1972
, “
An Investigation of Particle Trajectories in Two-Phase Flow Systems
,”
J. Fluid Mech.
,
55
(
2
), pp.
193
208
.
40.
Boyden
,
S. B.
, and
Zhang
,
Y.
,
2006
, “
Temperature and Wavelength-Dependent Spectral Absorptivities of Metallic Materials in the Infrared
,”
J. Thermophys. Heat Transfer.
,
20
(
1
), pp.
9
15
.
41.
Mazumder
,
J.
, and
Steen
,
W.
,
1980
, “
Heat Transfer Model for CW Laser Material Processing
,”
J. Appl. Phys.
,
51
(
2
), pp.
941
947
.
42.
Manvatkar
,
V.
,
De
,
A.
, and
DebRoy
,
T.
,
2015
, “
Spatial Variation of Melt Pool Geometry, Peak Temperature and Solidification Parameters During Laser Assisted Additive Manufacturing Process
,”
Mater. Sci. Technol.
,
31
(
8
), pp.
924
930
.
43.
Ning
,
J.
,
Zhang
,
L. J.
,
Yin
,
X.
,
Zhang
,
J. X.
, and
Na
,
S. J.
,
2019
, “
Mechanism Study on the Effects of Power Modulation on Energy Coupling Efficiency in Infrared Laser Welding of Highly-Reflective Materials
,”
Mater. Des.
,
178
, p.
107871
.
44.
Ki
,
H.
,
Mohanty
,
P. S.
, and
Mazumder
,
J.
,
2002
, “
Multiple Reflection and Its Influence on Keyhole Evolution
,”
J. Laser Appl.
,
14
(
1
), pp.
39
45
.
45.
Webster
,
S.
,
Jeong
,
J.
,
Liao
,
S.
, and
Cao
,
J.
,
2023
, “
Machine-Agnostic Energy Density Model for Laser, Powder-Blown Directed Energy Deposition
,”
J. Manuf. Process.
,
100
, pp.
11
19
.
46.
Boutalbi
,
N.
,
Bouaziz
,
M. N.
, and
Allouche
,
M.
,
2016
, “
Influence of Temperature-Dependent Absorptivity on Solid Surface Heated by CO2 and Nd: YAG Lasers
,”
J. Laser Appl.
,
28
(
3
), p.
032004
.
47.
MatWeb
, “
Online Materials Information Resource
,” http://www.matweb.com, Accessed September 21, 2023.
48.
Peet
,
M.
,
Hasan
,
H.
, and
Bhadeshia
,
H.
,
2011
, “
Prediction of Thermal Conductivity of Steel
,”
Int. J. Heat Mass Transfer
,
54
(
11–12
), pp.
2602
2608
.
49.
Hubbard
,
J.
,
1988
, “Microscopy and Image Analysis,”
ASM Handbook of Powder Metallurgy
, Vol.
7
,
American Society of Metals
,
Novelty, OH
, pp.
225
232
.
50.
Moghaddam
,
A. O.
,
Shaburova
,
N. A.
,
Samodurova
,
M. N.
,
Abdollahzadeh
,
A.
, and
Trofimov
,
E. A.
,
2021
, “
Additive Manufacturing of High Entropy Alloys: A Practical Review
,”
J. Mater. Sci. Technol.
,
77
, pp.
131
162
.
51.
Attallah
,
M. M.
,
Jennings
,
R.
,
Wang
,
X.
, and
Carter
,
L. N.
,
2016
, “
Additive Manufacturing of Ni-Based Superalloys: The Outstanding Issues
,”
MRS Bull.
,
41
(
10
), pp.
758
764
.
52.
Capus
,
J. M.
,
2005
,
Metal Powders: A Global Survey of Production, Applications and Markets 2001–2010
,
Elsevier
,
Oxford UK
.
53.
Dhami
,
H. S.
,
Panda
,
P. R.
,
Mohanty
,
D. P.
, and
Viswanathan
,
K.
,
2022
, “
An Analytical Method for Predicting Temperature Rise Due to Multi-Body Thermal Interaction in Deformation Processing
,”
JOM
,
74
(
2
), pp.
513
525
.
54.
Dhami
,
H.
,
Panda
,
P.
,
Viswanathan
,
K.
, and
Puneeth
,
S.
,
2023
, “
Of Fiery Sparks and Glittering Spots: Melting-Resolidification and Spherical Particle Formation in Abrasion
,”
Proc. R. Soc. A
,
479
(
2271
), p.
20220629
.
55.
Jones
,
N. F.
,
Beuth
,
J. L.
, and
de Boer
,
M. P.
,
2021
, “
Directed Energy Deposition Joining of Inconel 625 to 304 Stainless Steel With Direct Bonding
,”
J. Mater. Res.
,
36
(
18
), pp.
3701
3712
.
56.
Aydogan
,
B.
,
O’Neil
,
A.
, and
Sahasrabudhe
,
H.
,
2021
, “
Microstructural and Mechanical Characterization of Stainless Steel 420 and Inconel 718 Multi-material Structures Fabricated Using Laser Directed Energy Deposition
,”
J. Manuf. Process.
,
68
, pp.
1224
1235
.
57.
Gäumann
,
M.
,
Bezencon
,
C.
,
Canalis
,
P.
, and
Kurz
,
W.
,
2001
, “
Single-Crystal Laser Deposition of Superalloys: Processing–Microstructure Maps
,”
Acta Mater.
,
49
(
6
), pp.
1051
1062
.
58.
Basak
,
A.
,
Acharya
,
R.
, and
Das
,
S.
,
2016
, “
Additive Manufacturing of Single-Crystal Superalloy CMSX-4 Through Scanning Laser Epitaxy: Computational Modeling, Experimental Process Development, and Process Parameter Optimization
,”
Metallurgical Mater. Trans. A.
,
47
(
8
), pp.
3845
3859
.
59.
Gibson
,
I.
,
Rosen
,
D.
,
Stucker
,
B.
, and
Khorasani
,
M.
,
2021
, “Hybrid Additive Manufacturing,”
Additive Manufacturing Technologies
,
Springer
,
Switzerland AG
, pp.
347
366
.
You do not currently have access to this content.