Abstract

Laser-induced forward transfer (LIFT) is proposed as a highly efficient and high-resolution printing technique. Tilting of the microjet in the LIFT process affects the deposition deviation, lowering the printing resolution. In this paper, the tilting behaviors of the metal microjet in the nanosecond LIFT process are investigated based on a high-speed observation. Experiments were conducted on the copper film under different laser fluences. Observations based on the pump-probe method were performed to capture the ejection behavior of microjets. It is found that the tilting direction is isotropic, and the tilting angle follows Gaussian distribution. The tilting behavior originates from the disturbance of residual stress within the film during jet generation because the statistical result of the tilting angle hardly varies with the propagation time. In addition, the tilting angle is found to decrease linearly with the laser fluence due to the ejection velocity increasing at a higher rate than the lateral velocity. The lateral offset of the tilting microjet at different flight distances matches well with the position deviations, verifying the tilting behavior of the microjet. This study provides essential comprehension of the tilting behavior of metal microjet in the LIFT process.

References

1.
Bohandy
,
J.
,
Kim
,
B. F.
, and
Adrian
,
F. J.
,
1986
, “
Metal Deposition From a Supported Metal Film Using an Excimer Laser
,”
J. Appl. Phys.
,
60
(
4
), pp.
1538
1539
.
2.
Zenou
,
M.
, and
Kotler
,
Z.
,
2016
, “
Printing of Metallic 3D Micro-Objects by Laser Induced Forward Transfer
,”
Opt. Express
,
24
(
2
), pp.
1431
1446
.
3.
Papazoglou
,
S.
, and
Zergioti
,
I.
,
2017
, “
Laser Induced Forward Transfer (LIFT) of Nano-Micro Patterns for Sensor Applications
,”
Microelectron. Eng.
,
182
(
5
), pp.
25
34
.
4.
Kim
,
H.
,
Auyeung
,
R. C. Y.
, and
Piqué
,
A.
,
2007
, “
Laser-Printed Thick-Film Electrodes for Solid-State Rechargeable Li-Ion Microbatteries
,”
J. Power Sources
,
165
(
1
), pp.
413
419
.
5.
Hirt
,
L.
,
Reiser
,
A.
,
Spolenak
,
R.
, and
Zambelli
,
T.
,
2017
, “
Additive Manufacturing of Metal Structures at the Micrometer Scale
,”
Adv. Mater.
,
29
(
17
), p.
1604211
.
6.
Visser
,
C. W.
,
Pohl
,
R.
,
Chao
,
S.
,
Römer
,
G. W.
,
Bert Huis in ‘t Veld
,
B.
, and
Lohse
,
D.
,
2015
, “
3D Printing: Toward 3D Printing of Pure Metals by Laser-Induced Forward Transfer
,”
Adv. Mater.
,
27
(
27
), pp.
4087
4092
.
7.
Zenou
,
M.
,
Sa’Ar
,
A.
, and
Kotler
,
Z.
,
2015
, “
Laser Jetting of Femto-Liter Metal Droplets for High Resolution 3D Printed Structures
,”
Sci. Rep.
,
5
(
1
), p.
17265
.
8.
Feinaeugle
,
M.
,
Pohl
,
R.
,
Bor
,
T.
,
Vaneker
,
T.
, and
Römer
,
G. W.
,
2018
, “
Printing of Complex Free-Standing Microstructures via Laser-Induced Forward Transfer (LIFT) of Pure Metal Thin Films
,”
Addit. Manuf.
,
24
(
1
), pp.
391
399
.
9.
Luo
,
J.
,
Pohl
,
R.
,
Qi
,
L.
,
Römer
,
G. W.
,
Sun
,
C.
,
Lohse
,
D.
, and
Visser
,
C. W.
,
2017
, “
Printing Functional 3D Microdevices by Laser-Induced Forward Transfer
,”
Small
,
13
(
9
), p.
1602553
.
10.
Qi
,
L.
,
Zhong
,
S.
,
Luo
,
J.
,
Zhang
,
D.
, and
Zuo
,
H.
,
2015
, “
Quantitative Characterization and Influence of Parameters on Surface Topography in Metal Micro-Droplet Deposition Manufacture
,”
Int. J. Mach. Tools Manuf.
,
88
(
1
), pp.
206
213
.
11.
Feinaeugle
,
M.
,
Alloncle
,
A. P.
,
Delaporte
,
P.
,
Sones
,
C. L.
, and
Eason
,
R. W.
,
2012
, “
Time-Resolved Shadowgraph Imaging of Femtosecond Laser-Induced Forward Transfer of Solid Materials
,”
Appl. Surf. Sci.
,
258
(
22
), pp.
8475
8483
.
12.
Luo
,
G.
,
Wu
,
D.
,
Zhou
,
Y.
,
Hu
,
Y.
, and
Yao
,
Z.
,
2021
, “
Laser Printing of Large-Scale Metal Micro/Nanoparticle Array: Deposition Behavior and Microstructure
,”
Int. J. Mach. Tools Manuf.
,
173
(
1
), p.
103845
.
13.
Luo
,
G.
,
Wu
,
D.
,
Zhou
,
Y.
,
Hu
,
Y.
, and
Yao
,
Z.
,
2022
, “
Elucidating Ejection Regimes of Metal Microdroplets in Voxel-Based Laser-Induced Forward Transfer
,”
Addit. Manuf.
,
55
(
1
), p.
102814
.
14.
Grant-Jacob
,
J. A.
,
Mills
,
B.
,
Feinaeugle
,
M.
,
Sones
,
C. L.
,
Oosterhuis
,
G.
,
Hoppenbrouwers
,
M. B.
, and
Eason
,
R. W.
,
2013
, “
Micron-Scale Copper Wires Printed Using Femtosecond Laser-Induced Forward Transfer With Automated Donor Replenishment
,”
Opt. Mater. Express
,
3
(
6
), pp.
747
754
.
15.
Giesbers
,
M.
,
Hoppenbrouwers
,
M.
,
Smits
,
E. C. P.
, and
Mandamparambil
,
R.
,
2014
, “
Process Optimization of LIFT Through Visualization: Towards High Resolution Metal Circuit Printing
,”
Proceedings of SPIE 9135, Laser Sources and Applications II
,
Brussels, Belgium
,
May 1
, Vol. 91350Z.
16.
Pohl
,
R.
,
Visser
,
C.
,
Römer
,
G.
,
Sun
,
C.
, and
Lohse
,
D.
,
2015
, “
Imaging of the Ejection Process of Nanosecond Laser-Induced Forward Transfer of Gold
,”
J. Laser Micro/Nanoeng.
,
10
(
2
), pp.
154
157
.
17.
Chao
,
Y.
,
Qi
,
L.
,
Xiao
,
Y.
,
Luo
,
J.
, and
Zhou
,
J.
,
2012
, “
Manufacturing of Micro Thin-Walled Metal Parts by Micro-Droplet Deposition
,”
J. Mater. Process. Technol.
,
212
(
2
), pp.
484
491
.
18.
Jin
,
Y.
,
He
,
Y.
,
Gao
,
Q.
,
Fu
,
J.
, and
Fu
,
G.
,
2014
, “
Droplet Deviation Modeling and Compensation Scheme of Inkjet Printing
,”
Int. J. Adv. Manuf. Technol.
,
75
(
9–12
), pp.
1405
1415
.
19.
Brasz
,
C. F.
,
Yang
,
J. H.
, and
Arnold
,
C. B.
,
2015
, “
Tilting of Adjacent Laser-Induced Liquid Jets
,”
Microfluid. Nanofluid.
,
18
(
2
), pp.
185
197
.
20.
Patrascioiu
,
A.
,
Florian
,
C.
,
Fernández-Pradas
,
J. M.
,
Morenza
,
J. L.
,
Hennig
,
G.
,
Delaporte
,
P.
, and
Serra
,
P.
,
2014
, “
Interaction Between Jets During Laser-Induced Forward Transfer
,”
Appl. Phys. Lett.
,
105
(
1
), p.
014101
.
21.
Biver
,
E.
,
Rapp
,
L.
,
Alloncle
,
A. P.
,
Serra
,
P.
, and
Delaporte
,
P.
,
2014
, “
High-Speed Multi-Jets Printing Using Laser Forward Transfer: Time-Resolved Study of the Ejection Dynamics
,”
Opt. Express
,
22
(
14
), pp.
17122
17134
.
22.
Sole-Gras
,
M.
,
Xiong
,
R.
,
Liang
,
C.
,
Roorda
,
W.
,
Yamaguchi
,
H.
, and
Huang
,
Y.
,
2021
, “
Study of Overlapping Adjacent Jets for Effective Laser-Induced Forward Transfer Printing
,”
ASME J. Manuf. Sci. Eng.
,
143
(
4
), p.
041001
.
23.
Veiko
,
V. P.
,
Shakhno
,
E. A.
,
Smirnov
,
V. N.
,
Miaskovski
,
A. M.
, and
Nikishin
,
G. D.
,
2006
, “
Laser–Induced Film Deposition by LIFT: Physical Mechanisms and Applications
,”
Laser Part. Beams
,
24
(
2
), pp.
203
209
.
24.
Mikšys
,
J.
,
Arutinov
,
G.
, and
Römer
,
G. R. B. E.
,
2019
, “
Pico- to Nanosecond Pulsed Laser-Induced Forward Transfer (LIFT) of Silver Nanoparticle Inks: A Comparative Study
,”
Appl. Phys. A
,
125
(
12
), p.
814
.
25.
Rayleigh
,
L.
,
1878
, “
On the Instability of Jets
,”
Proc. Lond. Math. Soc.
,
s1–10
(
1
), pp.
4
13
.
26.
Zhang
,
L. V.
,
Brunet
,
P.
,
Eggers
,
J.
, and
Deegan
,
R. D.
,
2010
, “
Wavelength Selection in the Crown Splash
,”
Phys. Fluids
,
22
(
12
), p.
122105
.
27.
Kuznetsov
,
A. I.
,
Unger
,
C.
,
Koch
,
J.
, and
Chichkov
,
B. N.
,
2012
, “
Laser-Induced Jet Formation and Droplet Ejection From Thin Metal Films
,”
Appl. Phys. A
,
106
(
3
), pp.
479
487
.
28.
Bush
,
J. W. M.
,
2012
,
MIT Lecture Notes on Surface Tension, Lecture 5(PDF)
,
Massachusetts Institute of Technology
,
Cambridge, MA
.
29.
Ivanov
,
D. S.
,
Kuznetsov
,
A. I.
,
Lipp
,
V. P.
,
Rethfeld
,
B.
,
Chichkov
,
B. N.
,
Garcia
,
M. E.
, and
Schulz
,
W.
,
2013
, “
Short Laser Pulse Nanostructuring of Metals: Direct Comparison of Molecular Dynamics Modeling and Experiment
,”
Appl. Phys. A
,
111
(
3
), pp.
675
687
.
30.
Pohl
,
R.
,
Visser
,
C. W.
,
Römer
,
G. W.
,
Lohse
,
D.
,
Sun
,
C.
, and
Huis in ‘t Veld
,
B.
,
2015
, “
Ejection Regimes in Picosecond Laser-Induced Forward Transfer of Metals
,”
Phys. Rev. Appl.
,
3
(
2
), p.
024001
.
31.
Sopeña
,
P.
,
González-Torres
,
S.
,
Fernández-Pradas
,
J. M.
, and
Serra
,
P.
,
2018
, “
Spraying Dynamics in Continuous Wave Laser Printing of Conductive Inks
,”
Sci. Rep.
,
8
(
1
), p.
7999
.
32.
Biver
,
E.
,
Rapp
,
L.
,
Alloncle
,
A.-P.
, and
Delaporte
,
P.
,
2014
, “
Multi-Jets Formation Using Laser Forward Transfer
,”
Appl. Surf. Sci.
,
302
(
30
), pp.
153
158
.
33.
Douvidzon
,
M. L.
,
Maayani
,
S.
,
Martin
,
L. L.
, and
Carmon
,
T.
,
2017
, “
Light and Capillary Waves Propagation in Water Fibers
,”
Sci. Rep.
,
7
(
1
), p.
16633
.
34.
Kim
,
T. H.
,
Lee
,
S. J.
,
Kim
,
D. H.
,
Kim
,
D. W.
,
Bae
,
J. W.
,
Kim
,
K. N.
,
Kim
,
Y. M.
, and
Yeom
,
G. Y.
,
2018
, “
Residual Stress Control of Cu Film Deposited Using a Pulsed Direct Current Magnetron Sputtering
,”
Thin Solid Films
,
660
(
30
), pp.
601
605
.
35.
Koch
,
R.
,
Hu
,
D.
, and
Das
,
A. K.
,
2005
, “
Compressive Stress in Polycrystalline Volmer-Weber Films
,”
Phys. Rev. Lett.
,
94
(
14
), p.
146101
.
36.
Engwall
,
A. M.
,
Rao
,
Z.
, and
Chason
,
E.
,
2016
, “
Origins of Residual Stress in Thin Films: Interaction Between Microstructure and Growth Kinetics
,”
Mater. Des.
,
110
(
15
), pp.
616
623
.
37.
Kenneth
,
K. K.
,
1996
,
Recent Advances in Spray Combustion: Spray Atomization and Drop Burning Phenomena
,
American Institute of Aeronautics and Astronautics
,
Reston, VA
, pp.
109
135
.
38.
Wu
,
D.
,
Lu
,
Z.
,
Luo
,
G.
, and
Hu
,
Y.
,
2022
, “
Effects of Flight Distance on Metal Microdroplet Depositing Behaviors in Laser-Induced Forward Transfer
,”
Proceedings of the ASME 2022 17th International Manufacturing Science and Engineering Conference
,
West Lafayette, IN
,
June 27–July 1
, p. V002T05A043.
You do not currently have access to this content.