Abstract

The debonding fiber defects on the grinding surface of SiO2f/SiO2 ceramic matrix composites deteriorate the service performance of related components. The low-damage process window is the key information to suppress machining damage by controlling grinding parameters. A mechanism model for debonding fiber damage on SiO2f/SiO2 surface was first proposed in this paper by the large deformation analysis for SiO2 fibers during rotary ultrasonic face grinding (RUFG). The established mechanism model built a bridge between grinding parameters and damage inhibition by integrating the ultrasonic stress effect, grinding force calculation, and critical fracture curvature cutting-off criterion of SiO2 fibers. The modeling mechanism for fiber deformation and fracture in grinding was validated by in situ observation of single abrasive grit scratching experiments. Besides, the low debonding damage process window predicted by the model was verified by experimental results and could be adopted to suppress the debonding fiber damage in grinding. The affected mechanism of fiber orientation, ultrasonic amplitude, and fiber-matrix interface strength on the low debonding damage process window was analyzed based on the theoretical and experimental results. The damage inhibition effect of the RUFG process was limited by the low fiber-matrix interface strength and axial cutter-relieving movement component. The ultrasonic-assisted vibration exerted its auxiliary effects through the ultrasonic stress effect and force reduction effect. The prerequisite for exerting the damage inhibition effect of RUFG was that the fiber-matrix interface strength was sufficient to resist the negative influence of the ultrasonic stress effect.

References

1.
Xu
,
T.
,
An
,
Z.
,
Qi
,
G.
,
Hou
,
X.
, and
Zhang
,
R.
,
2023
, “
A Novel Cost-Effective and Near-Net-Shape Fabrication Process for SiO2f/SiO2 Composites
,”
J. Eur. Ceram. Soc.
,
43
(
9
), pp.
4095
4101
.
2.
Zhang
,
Y.
,
Fan
,
X.
,
Yang
,
Z.
,
Zhou
,
C.
, and
Li
,
Y.
,
2023
, “
Fabrication and High-Temperature Strength of 2.5 D SiO2f/SiO2 Composites Prepared by a Combined Vacuum Impregnation and Sol-Gel Method
,”
Ceram. Int.
,
49
(
22
), pp.
36199
36205
.
3.
Dong
,
Z.
,
Liu
,
S.
,
Kang
,
R.
, and
Bao
,
Y.
,
2024
, “
SiO2f/SiO2 Composite Grinding Characteristics Based on Maximum Undistorted Chip Thickness
,”
Mater. Manuf. Processes
,
39
(
7
), pp.
1009
1018
.
4.
Wei
,
J.
,
Wang
,
H.
,
Lin
,
B.
,
Sui
,
T.
,
Zhao
,
F.
, and
Fang
,
S.
,
2019
, “
Acoustic Emission Signal of Fiber-Reinforced Composite Grinding: Frequency Components and Damage Pattern Recognition
,”
Int. J. Adv. Manuf. Technol.
,
103
(
1–4
), pp.
1391
1401
.
5.
An
,
Q.
,
Chen
,
J.
,
Ming
,
W.
, and
Chen
,
M.
,
2021
, “
Machining of SiC Ceramic Matrix Composites: A Review
,”
Chin. J. Aeronaut.
,
34
(
4
), pp.
540
567
.
6.
Qu
,
S.
,
Gong
,
Y.
,
Yang
,
Y.
,
Wen
,
X.
, and
Yin
,
G.
,
2019
, “
Grinding Characteristics and Removal Mechanisms of Unidirectional Carbon Fibre Reinforced Silicon Carbide Ceramic Matrix Composites
,”
Ceram. Int.
,
45
(
3
), pp.
3059
3071
.
7.
Eder
,
S.
,
Cihak-Bayr
,
U.
, and
Pauschitz
,
A.
,
2015
, “
Nanotribological Simulations of Multi-grit Polishing and Grinding
,”
Wear
,
340
, pp.
25
30
.
8.
Li
,
C.
,
Hu
,
Y.
,
Wei
,
Z.
,
Wu
,
C.
,
Peng
,
Y.
,
Zhang
,
F.
, and
Geng
,
Y.
,
2024
, “
Damage Evolution and Removal Behaviors of GaN Crystals Involved in Double-Grits Grinding
,”
Int. J. Extreme Manuf.
,
6
(
2
), p.
025103
.
9.
Wu
,
Z.
, and
Zhang
,
L.
,
2023
, “
Analytical Grinding Force Prediction With Random Abrasive Grains of Grinding Wheels
,”
Int. J. Mech. Sci.
,
250
, p.
108310
.
10.
Chu
,
Y.
,
Yan
,
S.
,
Yang
,
Z.
,
Xu
,
X.
,
Wang
,
H.
, and
Ding
,
H.
,
2024
, “
Grain Shape-Protrusion-Based Modeling and Analysis of Material Removal in Robotic Belt Grinding
,”
J. Manuf. Processes
,
110
, pp.
211
223
.
11.
Wang
,
Y.
,
Wang
,
H.
,
Wei
,
J.
,
Lin
,
B.
,
Xu
,
J.
, and
Fang
,
S.
,
2019
, “
Finite Element Analysis of Grinding Process of Long Fiber Reinforced Ceramic Matrix Woven Composites: Modeling, Experimental Verification and Material Removal Mechanism
,”
Ceram. Int.
,
45
(
13
), pp.
15920
15927
.
12.
Yin
,
J.
,
Li
,
M.
,
Xu
,
J.
,
Ding
,
W.
, and
Su
,
H.
,
2022
, “
Edge Chipping Characteristics in Grinding SiCf/SiC Composite
,”
Ceram. Int.
,
48
(
5
), pp.
7126
7135
.
13.
Yin
,
J.
,
Xu
,
J.
,
Ding
,
W.
, and
Su
,
H.
,
2021
, “
Effects of Grinding Speed on the Material Removal Mechanism in Single Grain Grinding of SiCf/SiC Ceramic Matrix Composite
,”
Ceram. Int.
,
47
(
9
), pp.
12795
12802
.
14.
Luna
,
G. G.
,
Axinte
,
D.
, and
Novovic
,
D.
,
2020
, “
Influence of Grit Geometry and Fibre Orientation on the Abrasive Material Removal Mechanisms of SiC/SiC Ceramic Matrix Composites (CMCs)
,”
Int. J. Mach. Tools Manuf.
,
157
, p.
103580
.
15.
Luna
,
G. G.
,
Axinte
,
D.
, and
Novovic
,
D.
,
2022
, “
Engineered Grinding Tools Reimplemented by Precise Sharpening: A Case Study on an Ultrahard Ceramic Matrix Composite (CMC)
,”
CIRP Ann-Manuf. Technol.
,
71
(
1
), pp.
289
292
.
16.
Liu
,
Y.
,
Quan
,
Y.
,
Wu
,
C.
,
Ye
,
L.
, and
Zhu
,
X.
,
2021
, “
Single Diamond Scribing of SiCf/SiC Composite: Force and Material Removal Mechanism Study
,”
Ceram. Int.
,
47
(
19
), pp.
27702
27709
.
17.
Li
,
Y.
,
Ge
,
X.
,
Wang
,
H.
,
Hu
,
Y.
,
Ning
,
F.
,
Cong
,
W.
, and
Ren
,
C.
,
2019
, “
Study of Material Removal Mechanisms in Grinding of C/SiC Composites Via Single-Abrasive Scratch Tests
,”
Ceram. Int.
,
45
(
4
), pp.
4729
4738
.
18.
Chen
,
J.
,
An
,
Q.
, and
Chen
,
M.
,
2020
, “
Transformation of Fracture Mechanism and Damage Behavior of Ceramic-Matrix Composites During Nano-Scratching
,”
Compos. Part A
,
130
, p.
105756
.
19.
Shan
,
C.
,
Zhang
,
M.
,
Yang
,
Y.
,
Zhang
,
S.
, and
Luo
,
M.
,
2020
, “
A Dynamic Cutting Force Model for Transverse Orthogonal Cutting of Unidirectional Carbon/Carbon Composites Considering Fiber Distribution
,”
Compos. Struct.
,
251
, p.
112668
.
20.
Xue
,
F.
,
Zheng
,
K.
,
Liao
,
W.
,
Shu
,
J.
, and
Dong
,
S.
,
2021
, “
Investigation on Fiber Fracture Mechanism of C/Sic Composites by Rotary Ultrasonic Milling
,”
Int. J. Mech. Sci.
,
191
, p.
106054
.
21.
Xu
,
W.
, and
Zhang
,
L.
,
2014
, “
On the Mechanics and Material Removal Mechanisms of Vibration-Assisted Cutting of Unidirectional Fibre-Reinforced Polymer Composites
,”
Int. J. Mach. Tools Manuf.
,
80
, pp.
1
10
.
22.
Lin
,
B.
,
Wang
,
H.
,
Wei
,
J.
, and
Sui
,
T.
,
2021
, “
Diamond Wheel Grinding Characteristics of 3D Orthogonal Quartz Fiber Reinforced Silica Ceramic Matrix Composite
,”
Chin. J. Aeronaut.
,
34
(
5
), pp.
404
414
.
23.
Li
,
H.
,
Lin
,
B.
,
Wan
,
S.
,
Wang
,
Y.
, and
Zhang
,
X.
,
2016
, “
An Experimental Investigation on Ultrasonic Vibration-Assisted Grinding of SiO2f/SiO2 Composites
,”
Mater. Manuf. Processes
,
31
(
7
), pp.
887
895
.
24.
Yao
,
L.
,
Liu
,
Z.
,
Song
,
Q.
,
Wang
,
B.
,
Cai
,
Y.
, and
Zhao
,
J.
,
2023
, “
Numerical Prediction of Surface Morphology and Roughness in Rotary Ultrasonic Face Grinding SiO2f/SiO2 Composite
,”
J. Mater. Res. Technol.
,
25
, pp.
5917
5937
.
25.
Zhou
,
K.
,
Xu
,
J.
,
Xiao
,
G.
, and
Huang
,
Y.
,
2022
, “
A Novel Low-Damage and Low-Abrasive Wear Processing Method of Cf/SiC Ceramic Matrix Composites: Laser-Induced Ablation-Assisted Grinding
,”
J. Mater. Process. Technol.
,
302
, p.
117503
.
26.
Zhao
,
G.
,
Nian
,
Z.
,
Zhang
,
Z.
,
Li
,
L.
, and
He
,
N.
,
2023
, “
Enhancing the Machinability of Cf/SiC Composite With the Assistance of Laser-Induced Oxidation During Milling
,”
J. Mater. Res. Technol.
,
22
, pp.
1651
1663
.
27.
Li
,
Z.
,
Jiao
,
Y.
,
Deines
,
T.
,
Pei
,
Z.
, and
Treadwell
,
C.
,
2005
, “
Rotary Ultrasonic Machining of Ceramic Matrix Composites: Feasibility Study and Designed Experiments
,”
Int. J. Mach. Tools Manuf.
,
45
(
12–13
), pp.
1402
1411
.
28.
Azarhoushang
,
B.
, and
Tawakoli
,
T.
,
2011
, “
Development of a Novel Ultrasonic Unit for Grinding of Ceramic Matrix Composites
,”
Int. J. Adv. Manuf. Technol.
,
57
(
9–12
), pp.
945
955
.
29.
Xiong
,
Y.
,
Wang
,
W.
,
Jiang
,
R.
,
Huang
,
B.
, and
Liu
,
C.
,
2022
, “
Feasibility and Tool Performance of Ultrasonic Vibration-Assisted Milling-Grinding SiCf/SiC Ceramic Matrix Composite
,”
J. Mater. Res. Technol.
,
19
, pp.
3018
3033
.
30.
Liu
,
Y.
,
Liu
,
Z.
,
Wang
,
X.
, and
Huang
,
T.
,
2020
, “
Experimental Study on Tool Wear in Ultrasonic Vibration–Assisted Milling of C/SiC Composites
,”
Int. J. Adv. Manuf. Technol.
,
107
(
1–2
), pp.
425
436
.
31.
Zhang
,
M.
,
Pang
,
Z.
,
Jia
,
Y.
, and
Shan
,
C.
,
2022
, “
Understanding the Machining Characteristic of Plain Weave Ceramic Matrix Composite in Ultrasonic-Assisted Grinding
,”
Ceram. Int.
,
48
(
4
), pp.
5557
5573
.
32.
Jin
,
J.
,
Wang
,
X.
,
Bie
,
W.
,
Chen
,
F.
, and
Zhao
,
B.
,
2024
, “
Machinability of SiCf/SiC Ceramic Matrix Composites Using Longitudinal-Torsional Coupled Rotary Ultrasonic Machining
,”
Int. J. Adv. Manuf. Technol.
,
131
(
5–6
), pp.
2465
2476
.
33.
Yu
,
W.
,
Chen
,
J.
,
An
,
Q.
,
Ming
,
W.
, and
Chen
,
M.
,
2023
, “
Investigations on the Effect of Ultrasonic Vibration on Fibre Fracture and Removal Mechanism in Cutting of Fibre Reinforced Silicon Carbide Ceramic Matrix Composites
,”
J. Manuf. Processes
,
94
, pp.
359
373
.
34.
Xie
,
Z.
,
Liu
,
Z.
,
Wang
,
B.
,
Xin
,
M.
,
Song
,
Q.
, and
Jiang
,
L.
,
2021
, “
Longitudinal Amplitude Effect on Material Removal Mechanism of Ultrasonic Vibration-Assisted Milling 2.5 DC/SiC Composites
,”
Ceram. Int.
,
47
(
22
), pp.
32144
32152
.
35.
Chen
,
J.
,
Ming
,
W.
,
An
,
Q.
, and
Chen
,
M.
,
2020
, “
Mechanism and Feasibility of Ultrasonic-Assisted Milling to Improve the Machined Surface Quality of 2D Cf/SiC Composites
,”
Ceram. Int.
,
46
(
10
), pp.
15122
15136
.
36.
Xie
,
Z.
,
Liu
,
Z.
,
Han
,
L.
,
Wang
,
B.
,
Xin
,
M.
,
Cai
,
Y.
, and
Song
,
Q.
,
2022
, “
Optimizing Amplitude to Improve Machined Surface Quality in Longitudinal Ultrasonic Vibration-Assisted Side Milling 2.5 DC/SiC Composites
,”
Compos. Struct.
,
297
, p.
115963
.
37.
Cheng
,
Q.
,
Dai
,
C.
,
Miao
,
Q.
,
Yin
,
Z.
,
Chen
,
J.
, and
Yang
,
S.
,
2024
, “
Axial and Composite Ultrasonic Vibration-Assisted Face Grinding of Silicon Carbide Ceramics: Grinding Force and Surface Quality
,”
Int. J. Adv. Manuf. Technol.
,
131
(
5–6
), pp.
2597
2614
.
38.
Ding
,
K.
,
Fu
,
Y.
,
Su
,
H.
,
Cui
,
F.
,
Li
,
Q.
,
Lei
,
W.
, and
Xu
,
H.
,
2017
, “
Study on Surface/Subsurface Breakage in Ultrasonic Assisted Grinding of C/SiC Composites
,”
Int. J. Adv. Manuf. Technol.
,
91
(
9–12
), pp.
3095
3105
.
39.
Choudhary
,
A.
,
Chakladar
,
N. D.
, and
Paul
,
S.
,
2021
, “
Identification and Estimation of Defects in High-Speed Ground C/SiC Ceramic Matrix Composites
,”
Compos. Struct.
,
261
, p.
113274
.
40.
Tong
,
J.
,
Chen
,
P.
,
Zhao
,
J.
, and
Zhao
,
B.
,
2019
, “
Fracture Test of Nanocomposite Ceramics Under Ultrasonic Vibration Based on Nonlocal Theory
,”
Ceram. Int.
,
45
(
16
), pp.
20945
20953
.
41.
Yao
,
L.
,
Liu
,
Z.
,
Song
,
Q.
,
Wang
,
B.
, and
Cai
,
Y.
,
2023
, “
Prediction Modelling of Cutting Force in Rotary Ultrasonic End Grinding 2.5 D Woven SiO2f/SiO2 Ceramic Matrix Composite
,”
Compos. Struct.
,
304
, p.
116448
.
42.
Yao
,
L.
,
Zhang
,
L.
,
Ge
,
P.
,
Gao
,
Y.
, and
Wang
,
H.
,
2020
, “
Study on Nucleation and Propagation of Median Cracks Generated by Scratching Single Crystal Silicon
,”
Mater. Sci. Semicond. Process.
,
105
, p.
104691
.
43.
Wang
,
P.
,
Ge
,
P.
,
Bi
,
W.
, and
Meng
,
J.
,
2019
, “
Interaction of Lateral Cracks in Double Scratching of Single-Crystal Silicon Carbide
,”
Theor. Appl. Fract. Mech.
,
104
, p.
102378
.
44.
Matthijsse
,
P.
, and
Griffioen
,
W.
,
2005
, “
Matching Optical Fiber Lifetime and Bend-Loss Limits for Optimized Local Loop Fiber Storage
,”
Opt. Fiber Technol.
,
11
(
1
), pp.
92
99
.
45.
Zhang
,
Y.
,
Liu
,
W.
,
Gui
,
Z.
,
Zhou
,
S.
, and
Ren
,
Z.
,
2023
, “
Damage Mechanisms of 2.5 D SiO2f/SiO2 Woven Ceramic Matrix Composites Under Compressive Impact
,”
Ceram. Int.
,
49
(
6
), pp.
9203
9218
.
46.
Geng
,
Z.
,
Zhou
,
P.
,
Meng
,
L.
,
Yan
,
Y.
, and
Guo
,
D.
,
2022
, “
Prediction of Surface Profile Evolution of Workpiece and Lapping Plate in Lapping Process
,”
ASME J. Manuf. Sci. Eng.
,
144
(
8
), p.
081001
.
47.
Xia
,
Z.
,
Fang
,
F.
,
Ahearne
,
E.
, and
Tao
,
M.
,
2020
, “
Advances in Polishing of Optical Freeform Surfaces: A Review
,”
J. Mater. Process. Technol.
,
286
, p.
116828
.
48.
Wang
,
H.
,
Wang
,
Y.
,
Lin
,
B.
,
Wei
,
J.
,
He
,
Y.
,
Zhao
,
F.
, and
Fang
,
S.
,
2019
, “
What Roles Do Ceramic Matrix and Woven Fibers Have in Bending Strength of SiO2/SiO2 Composites: An Experimental Investigation and Acoustic Emission Analysis
,”
Ceram. Int.
,
45
(
1
), pp.
1143
1149
.
49.
Xia
,
X.
,
Duan
,
J.
,
Mao
,
B.
,
Wang
,
D.
, and
Gao
,
G.
,
2024
, “
Effect of Sintering Temperature on Microstructure and Flexural Strength of 2.5 D SiO2f/SiO2 Composites
,”
Silicon
,
16
(
4
), pp.
1847
1856
.
50.
Chen
,
C.
, and
Chang
,
T.
,
2003
, “
Fracture Mechanics Evaluation of Optical Fibers
,”
Mater. Chem. Phys.
,
77
(
1
), pp.
110
116
.
You do not currently have access to this content.