Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

In this work, a large-scale, high-viscosity vat photopolymerization additive manufacturing system is designed and fabricated to print 3D structures as large as 370 × 300 × 370 mm3 out of high-viscosity, low-reactivity elastomeric resins. A detailed overview is presented of the printer's design and capabilities, including a resin processing sub-system that stores and spreads high-viscosity resin; a roll-to-roll variable tensioning system to mitigate the separation forces after printing each layer; and a light patterning system that generates high-intensity light patterns across an area of 370 × 300 mm2 with a resolution of 3840 × 4320 pixels. The ability to print with both high-viscosity and low-reactivity resins and resins that require high-intensity light enables additive manufacturing of new classes of materials that could not be printed previously using vat photopolymerization techniques. These materials include highly reinforced silica nanoparticle composites, high-molecular-weight polymers such as silicones and acrylate or methacrylate resins, and low-reactivity resins such as photocurable platinum-catalyzed liquid silicone rubber.

References

1.
Hull
,
C. W.
,
1986
, “Apparatus for Production of Three-Dimensional Objects by Stereolithography,” US Patent 4,575,330.
3.
Bertsch
,
A.
,
Zissi
,
S.
,
Jezequel
,
J. Y.
,
Corbel
,
S.
, and
Andre
,
J. C.
,
1997
, “
Microstereophotolithography Using a Liquid Crystal Display as Dynamic Mask-Generator
,”
Microsyst. Technol.
,
3
(
2
), pp.
42
47
.
4.
Chatwin
,
C.
,
Farsari
,
M.
,
Huang
,
S.
,
Heywood
,
M.
,
Birch
,
P.
,
Young
,
R.
, and
Richardson
,
J.
,
1998
, “
UV Microstereolithography System That Uses Spatial Light Modulator Technology
,”
Appl. Opt.
,
37
(
32
), pp.
7514
7522
.
5.
Monneret
,
S.
,
Le Gall
,
H.
,
Badé
,
V.
,
Devaux
,
F.
,
Mosset
,
A.
, and
Lantz
,
E.
,
2002
, “
Dynamic UV Microstereolithography
,”
Eur. Phys. J. Appl. Phys.
,
20
(
3
), pp.
213
218
.
6.
Choi
,
J.-W.
,
Irwin
,
M. D.
, and
Wicker
,
R. B.
,
2010
, “
DMD-Based 3D Micro-Manufacturing
,”
Paper Presented at the Emerging Digital Micromirror Device Based Systems and Applications II
,
San Francisco, CA
,
Jan. 27
.
7.
Hadipoespito
,
G. W.
,
Yang
,
Y.
,
Choi
,
H.
,
Ning
,
G.
, and
Li
,
X.
,
2003
, “
Digital Micromirror Device Based Microstereolithography for Micro Structures of Transparent Photopolymer and Nanocomposites
,”
Paper Presented at the 2002 International Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 5
.
8.
Limaye
,
A.
, and
Rosen
,
D.
,
2004
, “
Quantifying Dimensional Accuracy of a Mask Projection Micro Stereolithography System
,”
Paper Presented at the 2004 International Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 2
.
9.
Sun
,
C.
,
Fang
,
N.
,
Wu
,
D.
, and
Zhang
,
X.
,
2005
, “
Projection Micro-stereolithography Using Digital Micro-mirror Dynamic Mask
,”
Sens. Actuators A
,
121
(
1
), pp.
113
120
.
10.
Takahashi
,
K.
, and
Setoyama
,
J.
,
2000
, “
A UV-Exposure System Using DMD
,”
Electron. Commun. Jpn. (Part II: Electronics)
,
83
(
7
), pp.
56
58
.
11.
Lin
,
D.-Z.
,
Yu
,
P.-H.
,
Zhang
,
Z.-J.
,
Chen
,
Y.-C.
,
Lin
,
S.-C.
, and
Jeng
,
J.-Y.
,
2023
, “
Design and Fabrication of Large Area Vat Photopolymerization 3D Printing System Using a 32-Inch Quasi-Collimated Visible Backlight Module With Local Dimming Control
,”
Addit. Manuf.
,
73
, p.
103665
.
12.
Carbon3D
,
2022
, “Carbon EPU 41 Technical Data Sheet,” https://docs.carbon3d.com/files/technical-data-sheets/tds_carbon_epu-41.pdf
13.
Formlabs
,
2019
, “Technical Data Sheet: Formlabs Standard Resin, PU Rigid 650,” https://formlabs-media.formlabs.com/datasheets/2201671-TDS-ENUS-0.pdf
14.
Boubakri
,
A.
,
Guermazi
,
N.
,
Elleuch
,
K.
, and
Ayedi
,
H.
,
2010
, “
Study of UV-Aging of Thermoplastic Polyurethane Material
,”
Mater. Sci. Eng.: A
,
527
(
7–8
), pp.
1649
1654
.
15.
Tcharkhtchi
,
A.
,
Farzaneh
,
S.
,
Abdallah-Elhirtsi
,
S.
,
Esmaeillou
,
B.
,
Nony
,
F.
, and
Baron
,
A.
,
2014
, “
Thermal Aging Effect on Mechanical Properties of Polyurethane
,”
Int. J. Polym. Anal. Charact.
,
19
(
7
), pp.
571
584
.
16.
Lukin
,
R. Y.
,
Kuchkaev
,
A. M.
,
Sukhov
,
A. V.
,
Bekmukhamedov
,
G. E.
, and
Yakhvarov
,
D. G. J. P.
,
2020
, “
Platinum-Catalyzed Hydrosilylation in Polymer Chemistry
,”
Polymers
,
12
(
10
), p.
2174
.
17.
Mazurek
,
P.
,
Vudayagiri
,
S.
, and
Skov
,
A. L.
,
2019
, “
How to Tailor Flexible Silicone Elastomers With Mechanical Integrity: A Tutorial Review
,”
Chem. Soc. Rev.
,
48
(
6
), pp.
1448
1464
.
18.
Strohmeier
,
L.
,
Frommwald
,
H.
, and
Schlögl
,
S.
,
2020
, “
Digital Light Processing 3D Printing of Modified Liquid Isoprene Rubber Using Thiol-Click Chemistry
,”
RSC Adv.
,
10
(
40
), pp.
23607
23614
.
19.
Bhattacharjee
,
N.
,
Parra-Cabrera
,
C.
,
Kim
,
Y. T.
,
Kuo
,
A. P.
, and
Folch
,
A.
,
2018
, “
Desktop-Stereolithography 3D-Printing of a Poly (Dimethylsiloxane)-Based Material With Sylgard-184 Properties
,”
Adv. Mater.
,
30
(
22
), p.
1800001
.
20.
Wallin
,
T. J.
,
Pikul
,
J. H.
,
Bodkhe
,
S.
,
Peele
,
B. N.
,
Mac Murray
,
B. C.
,
Therriault
,
D.
,
McEnerney
,
B. W.
,
Dillon
,
R. P.
,
Giannelis
,
E. P.
, and
Shepherd
,
R.
,
2017
, “
Click Chemistry Stereolithography for Soft Robots That Self-heal
,”
J. Mater. Chem. B
,
5
(
31
), pp.
6249
6255
.
21.
Wallin
,
T. J.
,
Simonsen
,
L.-E.
,
Pan
,
W.
,
Wang
,
K.
,
Giannelis
,
E.
,
Shepherd
,
R. F.
, and
Mengüç
,
Y.
,
2020
, “
3D Printable Tough Silicone Double Networks
,”
Nat. Commun.
,
11
(
1
), pp.
1
10
.
22.
Song
,
H.
,
Rodriguez
,
N. A.
,
Okadale
,
J. S.
,
Duoss
,
E. B.
,
Crawford
,
R. H.
, and
Seepersad
,
C. C.
,
2022
, “
Aging of UV Curable PDMS Developed for Large-Scale, High Viscosity Stereolithography
,”
Polym. Degrad. Stab.
,
207
, p.
110227
.
23.
Bhagat
,
A. A.
,
Jothimuthu
,
P.
, and
Papautsky
,
I.
,
2007
, “
Photodefinable Polydimethylsiloxane (PDMS) for Rapid Lab-on-a-Chip Prototyping
,”
Lab Chip
,
7
(
9
), pp.
1192
1197
.
24.
Hayashi
,
T.
, and
Yamasaki
,
K.
,
2007
, “
C–E Bond Formation Through Asymmetric Hydrosilylation of Alkenes
,”
Comprehensive Organomet. Chem. III
,
10
, pp.
815
838
.
25.
Oxman
,
J. D.
, and
Boardman
,
L. D.
,
1992
, “Radiation Activated Hydrosilation Reaction,” U.S. Patent No. 5,145,886, U.S. Patent and Trademark Office, Washington, DC.
26.
Oxman
,
J. D.
, and
Boardman
,
L. D.
,
2002
, “Hydrosilation Reaction Utilizing a (Cyclopentadiene)(Sigma-Aliphatic) Platinum Complex and a Free Radical Photoinitiator,” U.S. Patent No. 6,376,569, U.S. Patent and Trademark Office, Washington, DC.
27.
Al-Turaif
,
H. A.
,
2010
, “
Effect of Nano TiO2 Particle Size on Mechanical Properties of Cured Epoxy Resin
,”
Prog. Org. Coat.
,
69
(
3
), pp.
241
246
.
28.
Xiao
,
C.
,
Tan
,
Y.
,
Yang
,
X.
,
Xu
,
T.
,
Wang
,
L.
, and
Qi
,
Z.
,
2018
, “
Mechanical Properties and Strengthening Mechanism of Epoxy Resin Reinforced With Nano-SiO2 Particles and Multi-walled Carbon Nanotubes
,”
Chem. Phys. Lett.
,
695
, pp.
34
43
.
29.
Thomas
,
D.
, and
Moore
,
B.
,
1972
, “
Filler Reinforcement in Silicone Polymers
,”
Polymer
,
13
(
3
), pp.
109
114
.
30.
Rodriguez
,
N. A.
,
Song
,
H.
,
Chen
,
M.
,
Oakdale
,
J. S.
,
Duoss
,
E. B.
,
Seepersad
,
C. C.
, and
Crawford
,
R. H. J. A. M.
,
2022
, “
Use of Wire Grid Polarizers With Liquid Crystal Display for Large-Volume Stereolithography
,”
Addit. Manuf.
,
52
, p.
102641
.
31.
Duoss
,
E. B.
,
Oakdale
,
J.
,
Rodriguez
,
N. A.
,
Hongtao
,
S.
,
Crawford
,
R.
,
Seepersad
,
C.
, and
Chen
,
M.
,
2022
, “System and Method for Liquid Crystal Display System Incorporating Wire Grid Polarizers for Large Scale and Large Volume Stereolithography,” Google Patents.
32.
Texas_Instruments
,
2017
, “
DLP9500UV DLP® 0.95 UV 1080p 2x LVDS Type A DMD Datasheet (Rev. C)
,” https://www.ti.com/lit/ds/symlink/dlp9500uv.pdf
33.
Song
,
H.
,
Rodriguez
,
N. A.
,
Seepersad
,
C. C.
,
Crawford
,
R. H.
,
Chen
,
M.
, and
Duoss
,
E. B.
,
2021
, “
Development of a Variable Tensioning System to Reduce Separation Force in Large Scale Stereolithography
,”
Addit. Manuf.
,
38
, p.
101816
.
34.
Duoss
,
E. B.
,
Oakdale
,
J.
,
Rodriguez
,
N. A.
,
Hongtao
,
S.
,
Crawford
,
R.
,
Seepersad
,
C.
, and
Chen
,
M.
,
2023
, “System and Method for Roll-to-Roll Film Tensioning for Reduced Separation Force During Bottom-Up Stereolithography,” Google Patents.
35.
de Blas Romero
,
A.
,
Pfaffinger
,
M.
,
Mitteramskogler
,
G.
,
Schwentenwein
,
M.
,
Jellinek
,
C.
,
Homa
,
J.
,
Díaz Lantada
,
A.
, and
Stampfl
,
J.
,
2017
, “
Lithography-Based Additive Manufacture of Ceramic Biodevices With Design-Controlled Surface Topographies
,”
Int. J. Adv. Manuf. Technol.
,
88
(
5
), pp.
1547
1555
.
36.
Harrer
,
W.
,
Schwentenwein
,
M.
,
Lube
,
T.
, and
Danzer
,
R.
,
2017
, “
Fractography of Zirconia-Specimens Made Using Additive Manufacturing (LCM) Technology
,”
J. Eur. Ceram. Soc.
,
37
(
14
), pp.
4331
4338
.
37.
Rodriguez
,
N.
,
Ruelas
,
S.
,
Forien
,
J.-B.
,
Dudukovic
,
N.
,
DeOtte
,
J.
,
Rodriguez
,
J.
,
Moran
,
B.
,
Lewicki
,
J. P.
,
Duoss
,
E. B.
, and
Oakdale
,
J. S.
,
2021
, “
3D Printing of High Viscosity Reinforced Silicone Elastomers
,”
Polymers
,
13
(
14
), p.
2239
.
38.
Song
,
X.
,
2016
,
Slurry Based Stereolithography: A Solid Freeform Fabrication Method of Ceramics and Composites
,
University of Southern California
,
Los Angeles, CA
.
39.
He
,
L.
,
Fei
,
F.
,
Wang
,
W.
, and
Song
,
X.
,
2019
, “
Support-Free Ceramic Stereolithography of Complex Overhanging Structures Based on an Elasto-viscoplastic Suspension Feedstock
,”
ACS Appl. Mater. Interfaces
,
11
(
20
), pp.
18849
18857
.
40.
Dow-Corning
,
2017
, “SYLGARD 184 Silicone Elastomer Technical Datasheet,” https://www.dow.com/content/dam/dcc/documents/en-us/productdatasheet/11/11-31/11-3184-sylgard-184-elastomer.pdf
41.
Zhao
,
T.
,
Yu
,
R.
,
Li
,
S.
,
Li
,
X.
,
Zhang
,
Y.
,
Yang
,
X.
,
Zhao
,
X.
, et al
,
2019
, “
Superstretchable and Processable Silicone Elastomers by Digital Light Processing 3D Printing
,”
ACS Appl. Mater. Interfaces
,
11
(
15
), pp.
14391
14398
.
42.
Jacobs
,
P. F.
,
1992
,
Fundamentals of Stereolithography
,
Society of Manufacturing Engineers
,
Southfield, MI
.
43.
Troegel
,
D.
, and
Stohrer
,
J.
,
2011
, “
Recent Advances and Actual Challenges in Late Transition Metal Catalyzed Hydrosilylation of Olefins From an Industrial Point of View
,”
Coord. Chem. Rev.
,
255
(
13–14
), pp.
1440
1459
.
44.
Decker
,
C.
,
1996
, “
Photoinitiated Crosslinking Polymerisation
,”
Prog. Polym. Sci.
,
21
(
4
), pp.
593
650
.
45.
Germain
,
L.
,
Fuentes
,
C. A.
,
van Vuure
,
A. W.
,
des Rieux
,
A.
, and
Dupont-Gillain
,
C.
,
2018
, “
3D-Printed Biodegradable Gyroid Scaffolds for Tissue Engineering Applications
,”
Mater. Des.
,
151
, pp.
113
122
.
46.
González-Castaño
,
M.
,
Baena-Moreno
,
F.
,
De Miguel
,
J. C. N.
,
Miah
,
K. U. M.
,
Arroyo-Torralvo
,
F.
,
Ossenbrink
,
R.
,
Odriozola
,
J. A.
, et al
,
2022
, “
3D-Printed Structured Catalysts for CO2 Methanation Reaction: Advancing of Gyroid-Based Geometries
,”
Energy Convers. Manage.
,
258
, p.
115464
.
47.
Kardel
,
K.
,
Carrano
,
A. L.
,
Blersch
,
D. M.
, and
Kaur
,
M.
,
2015
, “
Preliminary Development of 3D-Printed Custom Substrata for Benthic Algal Biofilms
,”
3D Print. Addit. Manuf.
,
2
(
1
), pp.
12
19
.
48.
Martinez
,
R. V.
,
Fish
,
C. R.
,
Chen
,
X.
, and
Whitesides
,
G. M.
,
2012
, “
Elastomeric Origami: Programmable Paper-Elastomer Composites as Pneumatic Actuators
,”
Adv. Funct. Mater.
,
22
(
7
), pp.
1376
1384
.
49.
Mosadegh
,
B.
,
Polygerinos
,
P.
,
Keplinger
,
C.
,
Wennstedt
,
S.
,
Shepherd
,
R. F.
,
Gupta
,
U.
,
Shim
,
J.
,
Bertoldi
,
K.
,
Walsh
,
C. J.
, and
Whitesides
,
G. M.
,
2014
, “
Pneumatic Networks for Soft Robotics That Actuate Rapidly
,”
Adv. Funct. Mater.
,
24
(
15
), pp.
2163
2170
.
50.
Carbonell
,
R.
,
Song
,
H.
,
Seepersad
,
C.
, and
Crawford
,
R.
,
2023
, “
Design for Additive Manufacturing of Pneumatic Soft Robotics Via a Large-Scale, High-Viscosity Vat Photopolymerization Process
,”
Paper Presented at the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Boston, MA
,
Aug. 22
.
You do not currently have access to this content.