Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

In the machining of high-strength materials, shear localization in serrated chip formation leads to time-varying thermo-mechanical loads exerted by the cutting tool on the machined surface. This results in periodic changes to surface integrity. This article explains the formation mechanism of machined surface microfeatures and residual stress fluctuations associated with serrated chip formation, based on a finite element model of machining Waspaloy using the coupled Eulerian–Lagrangian method. The model is validated by comparing the simulation results with experimentally measured chip morphologies and machined surface profiles. During machining with a constant chip thickness, the machined surface exhibits a uniformly distributed residual stress pattern along the cutting velocity direction. However, increased cutting velocity and serrated chip formation cause periodic shear bands, leading to time-varying location of the stagnation point on the cutting tool. This results in variations in the workpiece material volume and the thermo-mechanical loads in the plowing region. After machining, the periodical variation in the elastic recovery of the plowed material at the bottom of the cutting tool creates waveforms on the finished surface, accompanied by fluctuations in residual stress at the same frequency as chip serration. The simulations quantitatively determine the normal/shear contact force at the tool-workpiece interfaces to reveal the effect of the time-varying stagnation point location on surface topographies and residual stress distributions.

References

1.
Komanduri
,
R.
,
1982
, “
Some Clarifications on the Mechanics of Chip Formation When Machining Titanium Alloys
,”
Wear
,
76
(
1
), pp.
15
34
.
2.
Amin
,
A. K. M.
,
Ismail
,
A. F.
, and
Nor Khairusshima
,
M. K.
,
2007
, “
Effectiveness of Uncoated WC–Co and PCD Inserts in End Milling of Titanium Alloy—Ti–6Al–4V
,”
J. Mater. Process. Technol.
,
192
, pp.
147
158
.
3.
Jadam
,
T.
,
Datta
,
S.
, and
Masanta
,
M.
,
2021
, “
Influence of Cutting Tool Material on Machinability of Inconel 718 Superalloy
,”
Mach. Sci. Technol.
,
25
(
3
), pp.
349
397
.
4.
Su
,
G.
,
Liu
,
Z.
,
Li
,
L.
, and
Wang
,
B.
,
2015
, “
Influences of Chip Serration on Micro-Topography of Machined Surface in High-Speed Cutting
,”
Int. J. Mach. Tools Manuf.
,
89
, pp.
202
207
.
5.
Xu
,
B.
,
Zhang
,
J.
,
Liu
,
H.
,
Xu
,
X.
, and
Zhao
,
W.
,
2021
, “
Serrated Chip Formation Induced Periodic Distribution of Morphological and Physical Characteristics in Machined Surface During High-Speed Machining of Ti6Al4V
,”
ASME J. Manuf. Sci. Eng.
,
143
(
10
), p.
101006
.
6.
Ulutan
,
D.
,
Alaca
,
B. E.
, and
Lazoglu
,
I.
,
2007
, “
Analytical Modelling of Residual Stresses in Machining
,”
J. Mater. Process. Technol.
,
183
(
1
), pp.
77
87
.
7.
Liao
,
Z.
,
la Monaca
,
A.
,
Murray
,
J.
,
Speidel
,
A.
,
Ushmaev
,
D.
,
Clare
,
A.
,
Axinte
,
D.
, and
M'Saoubi
,
R.
,
2021
, “
Surface Integrity in Metal Machining—Part I: Fundamentals of Surface Characteristics and Formation Mechanisms
,”
Int. J. Mach. Tools Manuf.
,
162
, p.
103687
.
8.
Liu
,
Y.
,
Agmell
,
M.
,
Xu
,
D.
,
Ahadi
,
A.
,
Stahl
,
J. E.
, and
Zhou
,
J.
,
2020
, “
Numerical Contribution to Segmented Chip Effect on Residual Stress Distribution in Orthogonal Cutting of Inconel718
,”
Int. J. Adv. Manuf. Technol.
,
109
(
3–4
), pp.
993
1005
.
9.
Yang
,
X.
, and
Liu
,
C.
,
2002
, “
A New Stress-Based Model of Friction Behavior in Machining and Its Significant Impact on Residual Stresses Computed by Finite Element Method
,”
Int. J. Mech. Sci.
,
44
(
4
), pp.
703
723
.
10.
Chen
,
L.
,
El-Wardany
,
T. I.
, and
Harris
,
W. C.
,
2004
, “
Modelling the Effects of Flank Wear Land and Chip Formation on Residual Stresses
,”
CIRP Ann.
,
53
(
1
), pp.
95
98
.
11.
Outeiro
,
J. C.
,
Umbrello
,
D.
, and
M'saoubi
,
R.
,
2006
, “
Experimental and Numerical Modelling of the Residual Stresses Induced in Orthogonal Cutting of AISI 316L Steel
,”
Int. J. Mach. Tools Manuf.
,
46
(
14
), pp.
1786
1794
.
12.
Umbrello
,
D.
,
Outeiro
,
J. C.
,
M'saoubi
,
R.
,
Jayal
,
A. D.
, and
Jawahir
,
I. S.
,
2010
, “
A Numerical Model Incorporating the Microstructure Alteration for Predicting Residual Stresses in Hard Machining of AISI 52100 Steel
,”
CIRP Ann.
,
59
(
1
), pp.
113
116
.
13.
Özel
,
T.
, and
Ulutan
,
D.
,
2012
, “
Prediction of Machining Induced Residual Stresses in Turning of Titanium and Nickel Based Alloys With Experiments and Finite Element Simulations
,”
CIRP Ann.
,
61
(
1
), pp.
547
550
.
14.
Kortabarria
,
A.
,
Armentia
,
I.
, and
Arrazola
,
P.
,
2016
, “
Sensitivity Analysis of Material Input Data Influence on Machining Induced Residual Stress Prediction in Inconel 718
,”
Simul. Modell. Pract. Theory
,
63
, pp.
47
57
.
15.
Song
,
X.
,
Li
,
A.
,
Lv
,
M.
,
Lv
,
H.
, and
Zhao
,
J.
,
2019
, “
Finite Element Simulation Study on Pre-Stress Multi-Step Cutting of Ti-6Al-4V Titanium Alloy
,”
Int. J. Adv. Manuf. Technol.
,
104
(
5–8
), pp.
2761
2771
.
16.
Liu
,
Y.
,
Xu
,
D.
,
Agmell
,
M.
,
M'Saoubi
,
R.
,
Ahadi
,
A.
,
Stahl
,
J. E.
, and
Zhou
,
J.
,
2021
, “
Numerical and Experimental Investigation of Tool Geometry Effect on Residual Stresses in Orthogonal Machining of Inconel 718
,”
Simul. Modell. Pract. Theory
,
106
, p.
102187
.
17.
Xu
,
X.
,
Outeiro
,
J.
,
Zhang
,
J.
,
Xu
,
B.
,
Zhao
,
W.
, and
Astakhov
,
V.
,
2021
, “
Machining Simulation of Ti6Al4V Using Coupled Eulerian-Lagrangian Approach and a Constitutive Model Considering the State of Stress
,”
Simul. Modell. Pract. Theory
,
110
, p.
102312
.
18.
Hu
,
C.
,
Outeiro
,
J.
,
Zhuang
,
K.
, and
Birembaux
,
H.
,
2023
, “
Selection of the Numerical Formulation for Modeling the Effect of Tool Cutting Edge Microgeometries in Machining of Ti6Al4 V Titanium Alloy
,”
Simul. Modell. Pract. Theory
,
129
, p.
102816
.
19.
Yang
,
S.
,
Jin
,
X.
,
Engin
,
S.
,
Kountanya
,
R.
,
El-Wardany
,
T.
, and
Lee
,
S. Y.
,
2023
, “
Effect of Cutting Fluids on Surface Residual Stress in Machining of Waspaloy
,”
J. Mater. Process. Technol.
,
322
, p.
118170
.
20.
Johnson
,
G. R.
, and
Cook
,
W. H.
,
1983
, “
A Constitutive Model and Data for Materials Subjected to Large Strains, High Strain Rates, and High Temperatures
,”
Proceedings of Seventh Information Symposium
,
The Hague, The Netherlands
,
Apr. 19–21
, pp.
541
547
.
21.
Johnson
,
G. R.
, and
Cook
,
W. H.
,
1985
, “
Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperatures and Pressures
,”
Eng. Fract. Mech.
,
21
(
1
), pp.
31
48
.
22.
Hillerborg
,
A.
,
Modéer
,
M.
, and
Petersson
,
P. E.
,
1976
, “
Analysis of Crack Formation and Crack Growth in Concrete by Means of Fracture Mechanics and Finite Elements
,”
Cem. Concr. Res.
,
6
(
6
), pp.
773
781
.
23.
Zorev
,
N. N.
,
1963
, “
Inter-Relationship Between Shear Processes Occurring Along Tool Face and Shear Plane in Metal Cutting
,”
Int. Res. Prod. Eng.
,
49
, pp.
143
152
.
24.
Fazlali
,
M.
,
Ponga
,
M.
, and
Jin
,
X.
,
2022
, “
Predictive Model of Chip Segmentation in Machining of High-Strength Metallic Alloys
,”
J. Mater. Process. Technol.
,
308
, p.
117723
.
25.
Agmell
,
M.
,
Bushlya
,
V.
,
Laakso
,
S. V.
,
Ahadi
,
A.
, and
Ståhl
,
J. E.
,
2018
, “
Development of a Simulation Model to Study Tool Loads in pcBN When Machining AISI 316L
,”
Int. J. Adv. Manuf. Technol.
,
96
(
5–8
), pp.
2853
2865
.
26.
Jomaa
,
W.
,
Mechri
,
O.
,
Lévesque
,
J.
,
Songmene
,
V.
,
Bocher
,
P.
, and
Gakwaya
,
A.
,
2017
, “
Finite Element Simulation and Analysis of Serrated Chip Formation During High–Speed Machining of AA7075–T651 Alloy
,”
J. Manuf. Processes
,
26
, pp.
446
458
.
27.
Ambrosio
,
D.
,
Tongne
,
A.
,
Wagner
,
V.
,
Dessein
,
G.
, and
Cahuc
,
O.
,
2022
, “
A New Damage Evolution Criterion for the Coupled Eulerian-Lagrangian Approach: Application to Three-Dimensional Numerical Simulation of Segmented Chip Formation Mechanisms in Orthogonal Cutting
,”
J. Manuf. Processes
,
73
, pp.
149
163
.
28.
ABAQUS
,
2016
, “Theory and Analysis User's Manual.” Version 6.14.
29.
Zhuang
,
K.
,
Gao
,
J.
,
Ye
,
T.
, and
Dai
,
X.
,
2022
, “
Effect of Cutting Edge Radius on Cutting Force and Surface Roughness in Machining of Ti-6Al-4V
,”
Procedia CIRP
,
108
, pp.
571
576
.
You do not currently have access to this content.