Abstract

In profile bending, the geometrical defect that reduces dimensional quality is mainly due to springback. While predicting dimensions after bending is important for quality control, many factors during bending cause difficulty in springback prediction. Furthermore, complex three-dimensional (3D) shapes in bending can make springback prediction significantly more difficult. This work presents a springback prediction method for varying curvature 3D profile/tube bending. An advanced five-axis bending machine, with rotary semi-dies opposing each other, has been developed. As the geometry of the bend die constrains the workpiece in the bending region, a model for 3D stretch bending is established from the rotational motion of the bend die. The discretized curvature of a bent profile geometry is described by using the Frenet–Serret frames, and a model for springback prediction is further developed based on the kinematics analysis of the bending process. This generalized analytic approach and numerical simulation are applied to evaluate springback in both 2D and 3D stretch bending of a thin-walled aluminum profile with a rectangular cross section. The analytical and numerical results for springback prediction are validated with experiments, showing good agreement. The developed model is able to evaluate 3D springback of a profile with arbitrary cross section efficiently for product design and development.

References

1.
Rosenthal
,
S.
,
Maaß
,
F.
,
Kamaliev
,
M.
,
Hahn
,
M.
,
Gies
,
S.
, and
Tekkaya
,
A. E.
,
2020
, “
Lightweight in Automotive Components by Forming Technology
,”
Automot. Innov.
,
3
(
3
), pp.
195
209
.
2.
Hirsch
,
J.
,
2014
, “
Recent Development in Aluminium for Automotive Applications
,”
Trans. Nonferrous Met. Soc. China
,
24
(
7
), pp.
1995
2002
.
3.
Benedyk
,
J. C.
,
2010
, “Aluminum Alloys for Lightweight Automotive Structures,”
Materials, Design and Manufacturing for Lightweight Vehicles
,
P. K.
Mallick
, ed.,
Woodhead Publishing
,
Sawston, UK
, pp.
79
113
.
4.
Shen
,
H.
, and
Vollertsen
,
F.
,
2009
, “
Modelling of Laser Forming–An Review
,”
Comput. Mater. Sci.
,
46
(
4
), pp.
834
840
.
5.
Vollertsen
,
F.
,
Sprenger
,
A.
,
Kraus
,
J.
, and
Arnet
,
H.
,
1999
, “
Extrusion, Channel, and Profile Bending: A Review
,”
J. Mater. Process. Technol.
,
87
(
1
), pp.
1
27
.
6.
Brazier
,
L. G.
,
1927
, “
On the Flexure of Thin Cylindrical Shells and Other “Thin” Sections
,”
Proc. R Soc. Lond. A Math. Phys. Sci.
,
116
(
773
), pp.
104
114
.
7.
Paulsen
,
F.
, and
Welo
,
T.
,
2003
,
3D Bending of Aluminium Extrusions for Automotive Applications (No. 2003-01-2855)
,
SAE International
,
Warrendale, PA
.
8.
Paulsen
,
F.
, and
Welo
,
T.
,
2002
, “
A Design Method for Prediction of Dimensions of Rectangular Hollow Sections Formed in Stretch Bending
,”
J. Mater. Process. Technol.
,
128
(
1
), pp.
48
66
.
9.
Baba
,
A.
, and
Tozawa
,
Y.
,
1964
, “
Effect of Tensile Force in Stretch-Forming Process on the Springback
,”
Bull. JSME
,
7
(
28
), pp.
834
843
.
10.
Kuwabara
,
T.
,
Takahashi
,
S.
,
Akiyama
,
K.
, and
Miyashita
,
Y.
,
1995
, “
2-D Springback Analysis for Stretch-Bending Processes Based on Total Strain Theory
,”
SAE Trans.
,
104
, pp.
504
513
.
11.
Ueda
,
M.
,
Ueno
,
K.
, and
Kobayashi
,
M.
,
1981
, “
A Study of Springback in the Stretch Bending of Channels
,”
J. Mech. Work. Technol.
,
5
(
3–4
), pp.
163
179
.
12.
Yu
,
T. X.
, and
Johnson
,
W.
,
1982
, “
Influence of Axial Force on the Elastic-Plastic Bending and Springback of a Beam
,”
J. Mech. Work. Technol.
,
6
(
1
), pp.
5
21
.
13.
El-Domiaty
,
A.
, and
Shabaik
,
A. H.
,
1984
, “
Bending of Work-Hardening Metals Under the Influence of Axial Load
,”
J. Mech. Work. Technol.
,
10
(
1
), pp.
57
66
.
14.
El-Domiaty
,
A.
,
1990
, “
Stretch Forming of Beams of Non-Uniform Section
,”
J. Mater. Process. Technol.
,
22
(
1
), pp.
21
28
.
15.
El-Domiaty
,
A. A.
, and
Elsharkawy
,
A. A.
,
1998
, “
Stretch-Bending Analysis of U-Section Beams
,”
Int. J. Mach. Tools Manuf.
,
38
(
1
), pp.
75
95
.
16.
Clausen
,
A. H.
,
Hopperstad
,
O. S.
, and
Langseth
,
M.
,
2001
, “
Sensitivity of Model Parameters in Stretch Bending of Aluminium Extrusions
,”
Int. J. Mech. Sci.
,
43
(
2
), pp.
427
453
.
17.
Clausen
,
A. H.
,
Hopperstad
,
O. S.
, and
Langseth
,
M.
,
1999
, “
Stretch Bending of Aluminum Extrusions: Effect of Tensile Sequence
,”
J. Eng. Mech.
,
125
(
5
), pp.
521
529
.
18.
Miller
,
J. E.
,
Kyriakides
,
S.
, and
Bastard
,
A. H.
,
2001
, “
On Bend-Stretch Forming of Aluminum Extruded Tubes—I: Experiments
,”
Int. J. Mech. Sci.
,
43
(
5
), pp.
1283
1317
.
19.
Zhu
,
H.
, and
Stelson
,
K. A.
,
2002
, “
Distortion of Rectangular Tubes in Stretch Bending
,”
ASME J. Manuf. Sci. Eng.
,
124
(
4
), pp.
886
890
.
20.
Miller
,
J. E.
, and
Kyriakides
,
S.
,
2003
, “
Three-Dimensional Effects of the Bend–Stretch Forming of Aluminum Tubes
,”
Int. J. Mech. Sci.
,
45
(
1
), pp.
115
140
.
21.
Paulsen
,
F.
, and
Welo
,
T.
,
2001
, “
Cross-Sectional Deformations of Rectangular Hollow Sections in Bending: Part I—Experiments
,”
Int. J. Mech. Sci.
,
43
(
1
), pp.
109
129
.
22.
Paulsen
,
F.
, and
Welo
,
T.
,
2001
, “
Cross-Sectional Deformations of Rectangular Hollow Sections in Bending: Part II—Analytical Models
,”
Int. J. Mech. Sci.
,
43
(
1
), pp.
131
152
.
23.
Welo
,
T.
, and
Baringbing
,
H. A.
,
2009
, “
On the Evaluation of Dimensional Accuracy in Rotary Stretch Bending
,”
Int. J. Mater. Form.
,
2
(
1
), pp.
849
852
.
24.
Ma
,
J.
,
Welo
,
T.
,
Blindheim
,
J.
, and
Ha
,
T.
,
2021
, “
Effect of Stretching on Springback in Rotary Stretch Bending of Aluminium Alloy Profiles
,”
Key Eng. Mater. Trans.
,
883
, pp.
175
180
.
25.
Ma
,
J.
, and
Welo
,
T.
,
2021
, “
Analytical Springback Assessment in Flexible Stretch Bending of Complex Shapes
,”
Int. J. Mach. Tools Manuf.
,
160
, p.
103653
.
26.
Liang
,
J.
,
Gao
,
S.
,
Teng
,
F.
,
Yu
,
P.
, and
Song
,
X.
,
2014
, “
Flexible 3D Stretch-Bending Technology for Aluminum Profile
,”
Int. J. Adv. Manuf. Technol.
,
71
(
9
), pp.
1939
1947
.
27.
Liang
,
J.
,
Chen
,
C.
,
Li
,
Y.
, and
Liang
,
C.
,
2020
, “
Effect of Roller Dies on Springback Law of Profile for Flexible 3D Multi-Point Stretch Bending
,”
Int. J. Adv. Manuf. Technol.
,
108
(
11
), pp.
3765
3777
.
28.
Welo
,
T.
,
Ma
,
J.
,
Blindheim
,
J.
,
Ha
,
T.
, and
Ringen
,
G.
,
2020
, “
Flexible 3D Stretch Bending of Aluminium Alloy Profiles: An Experimental and Numerical Study
,”
Procedia Manuf.
,
50
, pp.
37
44
.
29.
Millman
,
R. S.
, and
Parker
,
G. D.
,
1977
,
Elements of Differential Geometry
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
30.
Ha
,
T.
,
Welo
,
T.
,
Ringen
,
G.
, and
Wang
,
J.
,
2022
, “
A Strategy for On-Machine Springback Measurement in Rotary Draw Bending Using Digital Image-Based Laser Tracking
,”
Int. J. Adv. Manuf. Technol.
,
119
(
1
), pp.
705
718
.
31.
Ha
,
T.
,
Ma
,
J.
,
Blindheim
,
J.
,
Welo
,
T.
,
Ringen
,
G.
, and
Wang
,
J.
,
2021
, “
A Computer Vision-Based, In-Situ Springback Monitoring Technique for Bending of Large Profiles
,”
ESAFORM 2021
,
Liège, Belgique
,
Apr. 14–16
.
You do not currently have access to this content.