Abstract

Electrical discharge machining (EDM) is a nonconventional machining process that involves the formation of a plasma in an interelectrode gap filled with a dielectric that melts and vaporizes the electrodes (tool and workpiece) when a voltage is applied across them. This work models the plasma discharge in the EDM process to describe plasma characteristics such as electron density, heavy species densities, plasma potential, and plasma temperature using chemical kinetics, fluid flow, and heat transfer mechanisms in a 1D domain in the direction of the gap. The 1D domain allows the model to utilize surface reactions on the electrode walls necessary for sustaining the plasma reactions. The domain also provides a perspective of the plasma characteristics near the workpiece. Temperature results are compared with the experimental data obtained from spectrometer measurements. Additionally, an estimate of the plasma diameter is made and compared with actual high-speed camera images. The effect of EDM parameters such as supply voltage and interelectrode gap size on plasma characteristics is studied. The model predicts the incumbent heat flux on the workpiece electrode for small gaps which could have applications in the development of melt-pool models of EDM. Finally, the model provides a physics-based understanding of the mechanisms of plasma generation in the EDM process.

References

1.
Raju
,
L.
, and
Somashekhar
,
S. H.
,
2016
, “
A State-of-the-Art Review on Micro Electrodischarge Machining
,”
Proc. Technol.
,
25
(Part of special issue: 1st Global Colloquium on Recent Advancements and Effectual Researches in Engineering, Science and Technology – RAEREST 2016 on April 22–23), pp.
1281
1288
.
2.
Uruarte
,
L.
,
Herrero
,
A.
,
Ivanov
,
A.
,
Oosterling
,
H.
,
Staemmler
,
L.
,
Tang
,
P. T.
, and
Allen
,
D.
,
2006
, “
Comparison Between Micro Fabrication Technologies for Metal Tooling
,”
Proc. IMechE
,
220
(
11
), pp.
29
36
.
3.
Jahan
,
M.
,
Rahman
,
M.
, and
Wong
,
Y.
,
2014
,
Compr. Mater. Process.
, Vol.
11
,
Elsevier
, pp.
333
371
.
4.
Gutowski
,
T.
,
Dahmus
,
J.
, and
Thiriez
,
A.
,
2006
, “
Electrical Energy Requirements for Manufacturing Processes
,”
13th CIRP International Conference of Life Cycle Engineering
,
Lueven, Switzerland
,
May 31–June 2
.
5.
Eubank
,
P. T.
,
Patel
,
M. R.
,
Barrufet
,
M. A.
, and
Bozkurt
,
B.
,
1993
, “
Theoretical Models of the Electrical Discharge Machining the Variable Mass, Cylindrical Plasma Model
,”
J. Appl. Phys.
,
73
(
11
), pp.
7900
7909
.
6.
Dhanik
,
S.
, and
Joshi
,
S. S.
,
2005
, “
Modeling of a Single Resistance Capacitance Pulse Discharge in Micro-Electro Discharge Machining
,”
ASME J. Manuf. Sci. Eng.
,
127
(
4
), pp.
759
767
.
7.
Mujumdar
,
S.
,
Curreli
,
D.
,
Kapoor
,
S. G.
, and
Ruzic
,
D.
,
2014
, “
A Model of Micro Electro-Discharge Machining Plasma Discharge in Deionized Water
,”
ASME J. Manuf. Sci. Eng.
,
136
(
3
), p.
031011
.
8.
Radmilovic-Radjenovic
,
M.
,
Radjenovic
,
B.
,
Klas
,
M.
,
Bojarov
,
A.
, and
Matejcik
,
S.
,
2013
, “
The Breakdown Mechanisms in Electrical Discharges: The Role of the Field Emission Effect in Direct Current Discharges in Micro Gaps
,”
Acta Phys. Slovaca
,
63
(
3
), pp.
105
205
.
9.
Harry
,
J. E.
,
2013
,
Introduction to Plasma Technology: Science, Engineering, and Applications
,
Wiley
,
New York
.
10.
Itikawa
,
Y.
, and
Mason
,
N.
,
2005
, “
Cross Sections for Electron Collisions With Water Molecules
,”
J. Phys. Chem. Ref. Data
,
34
(
1
), pp.
1
22
.
11.
Hayashi
,
M.
,
1987
,
Electron Collision Cross-Sections for Molecules Determined From Beam and Swarm Data, Swarm Studies and Inelastic Electron-Molecule Collisions
,
Springer
,
New York
.
12.
Nijdam
,
S.
,
Teunissen
,
J.
, and
Ebert
,
U.
,
2020
, “
The Physics of Streamer Discharge Phenomena
,”
Plasma Sources Sci. Technol.
,
29
(
10
), p.
103001
.
13.
Lieberman
,
M. A.
, and
Lichtenberg
,
A. J.
,
1994
,
Principles of Plasma Discharges and Materials Processing
,
Wiley
,
New York
.
14.
COMSOL
,
Plasma Module User’s Guide
.
15.
Chen
,
F. F.
,
2015
,
Introduction to Plasma Physics and Controlled Fusion
,
Springer
,
New York
.
16.
Hagelaar
,
G. J. M.
, and
Pitchford
,
L. C.
,
2005
, “
Solving the Boltzmann Equation to Obtain Electron Transport Coefficients and Rate Coefficients for Fluid Models
,”
Plasma Sources Sci. Technol.
,
14
(
4
), pp.
722
733
.
17.
Marinkovic
,
B. P.
,
Pejcev
,
V.
,
Filipovic
,
D. M.
,
Šević
,
D.
,
Milosavljević
,
A. R.
,
Milisavljević
,
S.
,
Rabasović
,
M. S.
,
Pavlović
,
D.
, and
Maljković
,
J. B.
,
2007
, “
Cross Section Data for Electroń Collisions in Plasma Physics
,”
J. Phys. Conf. Ser.
,
86
(
1
), p.
012006
.
18.
Gordon
,
S.
, and
McBride
,
B.
,
1971
,
Computer Program for Calculation of Complex Chemical Equilibrium Compositions, Rocket Performance, Incident and Reflected Shocks, and Chapman-Jouquet Detonations, NASA
.
19.
Gonzalez
,
L. A.
,
Angelucci
,
M.
,
Larciprete
,
R.
, and
Cimino
,
R.
,
2017
, “
The Secondary Electron Yield of Noble Metal Surfaces
,”
AIP Adv.
,
7
(
11
), p.
115203
.
20.
Idris
,
N.
,
Usmawanda
,
T. N.
,
Lahna
,
K.
, and
Ramli
,
M.
,
2018
, “
Temperature Estimation Using Boltzmann Plot Method of Many Calcium Emission Lines in Laser Plasma Produced on River Clamshell Sample
,”
J. Phys. Conf. Ser.
,
1120
(
1
), p.
012098
.
You do not currently have access to this content.