Abstract

It is investigated to what extent the evolution of ductile damage in cold forging can be controlled without changing the geometry of the produced part. Besides the effects of strain hardening and residual stresses, damage, which is the nucleation, growth and coalescence of voids on microscopic level, affects product properties of the manufactured components such as fatigue strength, impact strength, or elastic stiffness. Former investigations have shown that the load path-dependent damage evolution in forward rod extrusion, and thus, the performance of produced parts can be controlled by the process parameters extrusion strain and shoulder opening angle. As these parameters also affect the geometry of extruded parts, design requirements of components might be violated by varying these. Thus, counterpressure is used to superpose purely hydrostatic stresses to forward rod extrusion in order to decrease triaxiality in the forming zone without causing geometric variations in the produced parts. The counterpressure is either introduced by a counterpunch or by modified process routes. The achieved improvements in product performance are in agreement with results obtained by variation of extrusion strain and shoulder opening angle as described in the literature. In addition, it is observed in tensile tests that damage in cold extruded parts does not significantly affect flow stress. All advancements in product performance are realized without affecting the products’ geometries.

References

1.
Lange
,
K.
,
Kammerer
,
M.
,
Pöhlandt
,
K.
, and
Schöck
,
J.
,
2008
,
Fließpressen -Wirtschaftliche Fertigung Metallischer Präzisionswerkstücke
,
Springer
,
Berlin/Heidelberg
.
2.
Jennison
,
H.
,
1930
, “
Certain Types of Defects in Copper Wire Caused by Improper Dies and Drawing Practice
,”
AIME Trans.
,
89
, pp.
121
139
.
3.
Soyarslan
,
C.
, and
Tekkaya
,
A. E.
,
2009
, “
Prevention of Internal Cracks In Forward Extrusion by Means of Counter Pressure: A Numerical Treatise
,”
Steel Res. Int.
,
80
(
9
), pp.
671
679
.
4.
Tekkaya
,
A. E.
,
Allwood
,
J. M.
,
Bariani
,
P. F.
,
Bruschi
,
S.
,
Cao
,
J.
,
Gramlich
,
S.
,
Groche
,
P.
, et al
,
2015
, “
Metal Forming Beyond Shaping: Predicting and Setting Product Properties
,”
CIRP Ann.—Manuf. Technol.
,
64
(
2
), pp.
629
653
.
5.
Tekkaya
,
A. E.
,
Bouchard
,
P.-O.
,
Bruschi
,
S.
, and
Tasan
,
C. C.
,
2020
, “
Damage in Metal Forming
,”
CIRP Ann.
,
69
(
2
), pp.
600
623
.
6.
Reusch
,
F.
,
2003
,
Entwicklung Und Anwendung Eines Nicht-Lokalen Materialmodells Zur Simulation Duktiler Schädigung in Metallischen Werkstoffen
,
Wirtschaftsverlag NW
.
7.
Roth
,
C. C.
, and
Mohr
,
D.
,
2016
, “
Ductile Fracture Experiments With Locally Proportional Loading Histories
,”
Int. J. Plast.
,
79
, pp.
328
354
.
8.
McClintock
,
F. A.
,
1968
, “
A Criterion for Ductile Fracture by the Growth of Holes
,”
ASME J. Appl. Mech.
,
35
(
2
), pp.
363
371
.
9.
Needleman
,
A.
,
1987
, “
Continuum Model for Void Nucleation By Inclusion Debonding
,”
Am. Soc. Mech. Eng.
,
54
, pp.
525
531
.
10.
Gerstein
,
G.
,
Besserer
,
H. B.
,
Nürnberger
,
F.
,
Barrales-Mora
,
L. A.
,
Shvindlerman
,
L. S.
,
Estrin
,
Y.
, and
Maier
,
H. J.
,
2017
, “
Formation and Growth of Voids in Dual-Phase Steel at Microscale and Nanoscale Levels
,”
J. Mater. Sci.
,
52
(
8
), pp.
4234
4243
.
11.
Rice
,
J. R.
, and
Tracey
,
D. M.
,
1969
, “
On the Ductile Enlargement of Voids in Triaxial Stress Fields*
,”
J. Mech. Phys. Solids
,
17
(
3
), pp.
201
217
.
12.
Kusche
,
C.
,
Reclik
,
T.
,
Freund
,
M.
,
Al-Samman
,
T.
,
Kerzel
,
U.
, and
Korte-Kerzel
,
S.
,
2019
, “
Large-Area, High-Resolution Characterisation and Classification of Damage Mechanisms in Dual-Phase Steel Using Deep Learning
,”
PLoS One
,
14
(
5
), pp.
1
22
.
13.
Tekkaya
,
A. E.
,
Ben Khalifa
,
N.
,
Hering
,
O.
,
Meya
,
R.
,
Myslicki
,
S.
, and
Walther
,
F.
,
2017
, “
Forming-Induced Damage and Its Effects on Product Properties
,”
CIRP Ann.—Manuf. Technol.
,
66
(
1
), pp.
281
284
.
14.
Tasan
,
C. C.
,
Hoefnagels
,
J. P. M.
, and
Geers
,
M. G. D.
,
2012
, “
Identification of the Continuum Damage Parameter: An Experimental Challenge in Modeling Damage Evolution
,”
Acta Mater.
,
60
(
8
), pp.
3581
3589
.
15.
Hering
,
O.
,
Dunlap
,
A.
,
Tekkaya
,
A. E.
,
Aretz
,
A.
, and
Schwedt
,
A.
,
2020
, “
Characterization of Damage in Forward Rod Extruded Parts
,”
Int. J. Mater. Form.
,
13
(
6
), pp.
1003
1014
.
16.
Bridgman
,
P. W.
,
1945
, “
Effects of High Hydrostatic Pressure on the Plastic Properties of Metals
,”
Rev. Mod. Phys.
,
17
(
1
), pp.
3
14
.
17.
Shi
,
Y.
,
Jin
,
H.
,
Wu
,
P. D.
, and
Lloyd
,
D. J.
,
2017
, “
Effects of Superimposed Hydrostatic Pressure on Necking and Fracture of Tube Under Hydroforming
,”
Int. J. Solids Struct.
,
113–114
, pp.
209
217
.
18.
Hering
,
O.
, and
Tekkaya
,
A. E.
,
2020
, “
Damage-Induced Performance Variations of Cold Forged Parts
,”
J. Mater. Process. Technol.
,
279
, p.
116556
.
19.
Wagener
,
H. W.
,
Haats
,
J.
, and
Wolf
,
J.
,
1992
, “
Increase of Workability of Brittle Materials by Cold Extrusion
,”
J. Mater. Process. Technol.
,
32
(
1–2
), pp.
451
460
.
20.
Meya
,
R.
,
Kusche
,
C. F.
,
Löbbe
,
C.
,
Samman
,
T. A.
,
Kerzel
,
S. K.
, and
Tekkaya
,
A. E.
,
2019
, “
Global and High-Resolution Damage Quantification in Dual-Phase Steel Bending Samples With Varying Stress States
,”
Metals
,
9
(
3
), p.
319
.
21.
Tan
,
X.
,
Bay
,
N.
, and
Zhang
,
W.
,
2003
, “
Friction Measurement and Modelling in Forward Rod Extrusion Tests
,”
Proc. Inst. Mech. Eng., Part J
,
217
(
1
), pp.
71
82
.
22.
Hering
,
O.
,
Kolpak
,
F.
, and
Tekkaya
,
A. E.
,
2019
, “
Flow Curves up to High Strains Considering Load Reversal and Damage
,”
Int. J. Mater. Form.
,
12
(
6
), pp.
955
972
.
23.
Pardoen
,
T.
,
Doghri
,
I.
, and
Delannay
,
F.
,
1998
, “
Experimental and Numerical Comparison of Void Growth Models and Void Coalescence Criteria for the Prediction of Ductile Fracture in Copper Bars
,”
Acta Mater.
,
46
(
2
), pp.
541
552
.
24.
Dieter
,
G. E.
,
1961
,
Mechanical Metallurgy
,
McGraw-Hill
,
New York
.
25.
Tekkaya
,
A. E.
,
Gerhardt
,
J.
, and
Burgdorf
,
M.
,
1985
, “
Residual Stresses in Cold-Formed Workpieces
,”
CIRP Ann.—Manuf. Technol.
,
34
(
1
), pp.
225
230
.
26.
Kachanov
,
L.
,
1999
, “
Rupture Time Under Creep Conditions
,”
Int. J. Fract.
,
97
(
1–4
), pp.
XI
XVIII
.
27.
Lemaitre
,
J.
,
1985
, “
Coupled Elasto-plasticity and Damage Constitutive Equations
,”
Comput. Methods Appl. Mech. Eng.
,
51
(
1–3
), pp.
31
49
.
You do not currently have access to this content.