Abstract

Microfluidic devices made from polydimethylsiloxane (PDMS) have diverse biomedical applications. However, due to the poor printability of PDMS, current 3D printing techniques are rarely used to fabricate microfluidic devices. This study aims to investigate a fumed silica-PDMS suspension that can function as a matrix bath for embedded 3D printing (e-3DP) purposes, making it technically feasible to print microfluidic chips with complex embedded channels via low-cost extrusion 3D printing. The rheological properties, mechanical properties, transparency, and filament fidelity of the fumed silica-PDMS suspension have been systematically studied. It is found that the addition of fumed silica particles can effectively change PDMS from a viscous solution to a yield-stress suspension with suitable rheological properties for e-3DP. Also, the mechanical properties of the crosslinked fumed silica-PDMS are enhanced with an increased concentration of fumed silica. Although the transparency of PDMS has been lessened by mixing it with fumed silica particles, the visibility of the printed microfluidic chips is still acceptable. The filament fidelity has been studied by embedded printing filaments using a sacrificial ink in the fumed silica-PDMS suspension. Finally, two representative microfluidic chips for biomedical applications have been successfully printed to validate the effectiveness of the proposed fumed silica-PDMS suspension-enabled e-3DP method.

References

1.
He
,
Y.
,
Wu
,
Y.
,
Fu
,
J.
,
Gao
,
Q.
, and
Qiu
,
J.
,
2016
, “
Developments of 3D Printing Microfluidics and Applications in Chemistry and Biology: A Review
,”
Electroanalysis
,
28
(
8
), pp.
1658
1678
.
2.
He
,
Y.
,
Qiu
,
J.
,
Fu
,
J.
,
Zhang
,
J.
,
Ren
,
Y.
, and
Liu
,
A.
,
2015
, “
Printing 3D Microfluidic Chips With a 3D Sugar Printer
,”
Microfluid. Nanofluid.
,
19
(
2
), pp.
447
456
.
3.
Fu
,
A. Y.
,
Chou
,
H.-P.
,
Spence
,
C.
,
Arnold
,
F. H.
, and
Quake
,
S. R.
,
2002
, “
An Integrated Microfabricated Cell Sorter
,”
Anal. Chem.
,
74
(
11
), pp.
2451
2457
.
4.
Thorslund
,
S.
,
Klett
,
O.
,
Nikolajeff
,
F.
,
Markides
,
K.
, and
Bergquist
,
J.
,
2006
, “
A Hybrid Poly (Dimethylsiloxane) Microsystem for On-Chip Whole Blood Filtration Optimized for Steroid Screening
,”
Biomed. Microdevices
,
8
(
1
), pp.
73
79
.
5.
Wilkinson
,
D. C.
,
Mellody
,
M.
,
Meneses
,
L. K.
,
Hope
,
A. C.
,
Dunn
,
B.
, and
Gomperts
,
B. N.
,
2018
, “
Development of a Three-Dimensional Bioengineering Technology to Generate Lung Tissue for Personalized Disease Modeling
,”
Curr. Protoc. Stem Cell Biol.
,
46
(
1
), p.
e56
.
6.
Mastikhina
,
O.
,
Moon
,
B.-U.
,
Williams
,
K.
,
Hatkar
,
R.
,
Gustafson
,
D.
,
Mourad
,
O.
,
Sun
,
X.
, et al
,
2020
, “
Human Cardiac Fibrosis-on-a-Chip Model Recapitulates Disease Hallmarks and Can Serve as a Platform for Drug Testing
,”
Biomaterials
,
233
, p.
119741
.
7.
Gökaltun
,
A.
,
Abraham Kang
,
Y. B.
,
Yarmush
,
M. L.
,
Berk Usta
,
O.
, and
Asatekin
,
A.
,
2019
, “
Simple Surface Modification of Poly (Dimethylsiloxane) Via Surface Segregating Smart Polymers for Biomicrofluidics
,”
Sci. Rep.
,
9
(
1
), pp.
1
14
.
8.
Manimaran
,
N. H.
,
Usman
,
H.
,
Kamga
,
K. L.
,
Davidson
,
S.-L.
,
Beckman
,
E.
, and
Niepa
,
T. H.
,
2020
, “
Developing a Functional Poly (Dimethylsiloxane)-Based Microbial Nanoculture System Using Dimethylallylamine
,”
ACS Appl. Mater. Interfaces
,
12
(
45
), pp.
50581
50591
.
9.
Wu
,
S.
,
Guo
,
Y.
,
Wang
,
W.
,
Zhou
,
J.
, and
Zhang
,
Q.
,
2019
, “
Label-Free Biosensing Using a Microring Resonator Integrated With Pol°C (Dimethylsiloxane) Microfluidic Channels
, ”
Rev. Sci. Instrum.
,
90
(
3
), p.
035004
.
10.
Shi
,
W.
,
Reid
,
L.
,
Huang
,
Y.
,
Uhl
,
C. G.
,
He
,
R.
,
Zhou
,
C.
, and
Liu
,
Y.
,
2019
, “
Bi-Layer Blood Vessel Mimicking Microfluidic Platform for Antitumor Drug Screening Based on Co-Culturing 3D Tumor Spheroids and Endothelial Layers
,”
Biomicrofluidics
,
13
(
4
), p.
044108
.
11.
Ng
,
J. M.
,
Gitlin
,
I.
,
Stroock
,
A. D.
, and
Whitesides
,
G. M.
,
2002
, “
Components for Integrated Poly (Dimethylsiloxane) Microfluidic Systems
,”
Electrophoresis
,
23
(
20
), pp.
3461
3473
.
12.
Hu
,
S.
,
Ren
,
X.
,
Bachman
,
M.
,
Sims
,
C. E.
,
Li
,
G. P.
, and
Allbritton
,
N. L.
,
2004
, “
Tailoring the Surface Properties of Poly (Dimethylsiloxane) Microfluidic Devices
,”
Langmuir
,
20
(
13
), pp.
5569
5574
.
13.
Merkel
,
T. C. V. I.
,
Nagai
,
B. K.
,
Freeman
,
B. D.
, and
Pinnau
,
I.
,
2000
, “
Gas Sorption, Diffusion, and Permeation in Poly (Dimethylsiloxane)
,”
J. Polym. Sci., Part B: Polym. Phys.
,
38
(
3
), pp.
415
434
.
14.
Raharjo
,
R. D.
,
Freeman
,
B. D.
,
Paul
,
D. R.
,
Sarti
,
G. C.
, and
Sanders
,
E. S.
,
2007
, “
Pure and Mixed Gas CH4 and n-C4H10 Permeability and Diffusivity in Poly (Dimethylsiloxane)
,”
J. Membr. Sci.
,
306
(
1–2
), pp.
75
92
.
15.
Chen
,
D.
,
Chen
,
F.
,
Hu
,
X.
,
Zhang
,
H.
,
Yin
,
X.
, and
Zhou
,
Y.
,
2015
, “
Thermal Stability, Mechanical and Optical Properties of Novel Addition Cured PDMS Composites With Nano-Silica Sol and MQ Silicone Resin
,”
Compos. Sci. Technol.
,
117
, pp.
307
314
.
16.
Qi
,
D.
,
Zhang
,
K.
,
Tian
,
G.
,
Jiang
,
B.
, and
Huang
,
Y.
,
2021
, “
Stretchable Electronics Based on PDMS Substrates
,”
Adv. Mater.
,
33
(
6
), p.
2003155
.
17.
Toepke
,
M. W.
, and
Beebe
,
D. J.
,
2006
, “
PDMS Absorption of Small Molecules and Consequences in Microfluidic Applications
,”
Lab Chip
,
6
(
12
), pp.
1484
1486
.
18.
Wang
,
J. D.
,
Douville
,
N. J.
,
Takayama
,
S.
, and
ElSayed
,
M.
,
2012
, “
Quantitative Analysis of Molecular Absorption Into PDMS Microfluidic Channels
,”
Ann. Biomed. Eng.
,
40
(
9
), pp.
1862
1873
.
19.
Cooper
,
M. J.
,
Duffy
,
D. C.
,
Anderson
,
J. R.
,
Chiu
,
D. T.
,
Wu
,
H.
,
Schueller
,
O. J.
, and
Whitesides
,
G. M.
,
2000
, “
Fabrication of Microfluidic Systems in Poly (Dimethylsiloxane)
,”
Electrophoresis
,
21
(
1
), pp.
27
40
.
20.
Kim
,
P.
,
Kwon
,
K. W.
,
Park
,
M. C.
,
Lee
,
S. H.
,
Kim
,
S. M.
, and
Suh
,
K. Y.
,
2008
, “
Soft Lithography for Microfluidics: A Review
,”
Biochip J.
,
2
(
1
), pp.
1
11
.
21.
Hinton
,
T. J.
,
Hudson
,
A.
,
Pusch
,
K.
,
Lee
,
A.
, and
Feinberg
,
A. W.
,
2016
, “
3D Printing PDMS Elastomer in a Hydrophilic Support Bath Via Freeform Reversible Embedding
,”
ACS Biomater. Sci. Eng.
,
2
(
10
), pp.
1781
1786
.
22.
Jin
,
Y.
,
Song
,
K.
,
Gellermann
,
N.
, and
Huang
,
Y.
,
2019
, “
Printing of Hydrophobic Materials in Fumed Silica Nanoparticle Suspension
,”
ACS Appl. Mater. Interfaces
,
11
(
32
), pp.
29207
29217
.
23.
Chen
,
C.
,
Mehl
,
B. T.
,
Munshi
,
A. S.
,
Townsend
,
A. D.
,
Spence
,
D. M.
, and
Scott Martin
,
R.
,
2016
, “
3D-Printed Microfluidic Devices: Fabrication, Advantages and Limitations—A Mini Review
,”
Anal. Methods
,
8
(
31
), pp.
6005
6012
.
24.
Kolesky
,
D. B.
,
Truby
,
R. L.
,
Sydney Gladman
,
A.
,
Busbee
,
T. A.
,
Homan
,
K. A.
, and
Lewis
,
J. A.
,
2014
, “
3D Bioprinting of Vascularized, Heterogeneous Cell-Laden Tissue Constructs
,”
Adv. Mater.
,
26
(
19
), pp.
3124
3130
.
25.
Skylar-Scott
,
M. A.
,
Uzel
,
S. G.
,
Nam
,
L. L.
,
Ahrens
,
J. H.
,
Truby
,
R. L.
,
Damaraju
,
S.
, and
Lewis
,
J. A.
,
2019
, “
Biomanufacturing of Organ-Specific Tissues With High Cellular Density and Embedded Vascular Channels
,”
Sci. Adv.
,
5
(
9
), p.
eaaw2459
.
26.
Shao
,
L.
,
Gao
,
Q.
,
Xie
,
C.
,
Fu
,
J.
,
Xiang
,
M.
, and
He
,
Y.
,
2020
, “
Synchronous 3D Bioprinting of Large-Scale Cell-Laden Constructs With Nutrient Networks
,”
Adv. Healthcare Mater.
,
9
(
15
), p.
1901142
.
27.
Forth
,
J.
,
Liu
,
X.
,
Hasnain
,
J.
,
Toor
,
A.
,
Miszta
,
K.
,
Shi
,
S.
,
Geissler
,
P. L.
,
Emrick
,
T.
,
Helms
,
B. A.
, and
Russell
,
T. P.
,
2018
, “
Reconfigurable Printed Liquids
,”
Adv. Mater.
,
30
(
16
), p.
1707603
.
28.
O’Bryan
,
C. S.
,
Bhattacharjee
,
T.
,
Niemi
,
S. R.
,
Balachandar
,
S.
,
Baldwin
,
N.
,
Tori Ellison
,
S.
,
Taylor
,
C. R.
,
Gregory Sawyer
,
W.
, and
Angelini
,
T. E.
,
2017
, “
Three-Dimensional Printing With Sacrificial Materials for Soft Matter Manufacturing
,”
MRS Bull.
,
42
(
8
), pp.
571
577
.
29.
Hua
,
W.
,
Mitchell
,
K.
,
Raymond
,
L.
,
Godina
,
B.
,
Zhao
,
D.
,
Zhou
,
W.
, and
Jin
,
Y.
,
2021
, “
Fluid Bath-Assisted 3D Printing for Biomedical Applications: From Pre-to Postprinting Stages
,”
ACS Biomater. Sci. Eng.
,
7
(
10
), pp.
4736
4756
.
30.
Grosskopf
,
A. K.
,
Truby
,
R. L.
,
Kim
,
H.
,
Perazzo
,
A.
,
Lewis
,
J. A.
, and
Stone
,
H. A.
,
2018
, “
Viscoplastic Matrix Materials for Embedded 3D Printing
,”
ACS Appl. Mater. Interfaces
,
10
(
27
), pp.
23353
23361
.
31.
Bohorquez
,
M.
,
Koch
,
C.
,
Trygstad
,
T.
, and
Pandit
,
N.
,
1999
, “
A Study of the Temperature-Dependent Micellization of Pluronic F127
,”
J. Colloid Interface Sci.
,
216
(
1
), pp.
34
40
.
32.
Paquien
,
J.-N.
,
Galy
,
J.
,
Gérard
,
J.-F.
, and
Pouchelon
,
A.
,
2005
, “
Rheological Studies of Fumed Silica-Polydimethylsiloxane Suspensions
,”
Colloids Surf., A
,
260
(
1–3
), pp.
165
172
.
33.
Jin
,
Y.
,
Chai
,
W.
, and
Huang
,
Y.
,
2017
, “
Printability Study of Hydrogel Solution Extrusion in Nanoclay Yield-Stress Bath During Printing-Then-Gelation Biofabrication
,”
Mater.Sci. Eng. C
,
80
(
1
), pp.
313
325
.
34.
O’Bryan
,
C. S.
,
Bhattacharjee
,
T.
,
Hart
,
S.
,
Kabb
,
C. P.
,
Schulze
,
K. D.
,
Chilakala
,
I.
,
Sumerlin
,
B. S.
,
Gregory Sawyer
,
W.
, and
Angelini
,
T. E.
,
2017
, “
Self-Assembled Micro-Organogels for 3D Printing Silicone Structures
,”
Sci. Adv.
,
3
(
5
), p.
e1602800
.
35.
Wehner
,
M.
,
Truby
,
R. L.
,
Fitzgerald
,
D. J.
,
Mosadegh
,
B.
,
Whitesides
,
G. M.
,
Lewis
,
J. A.
, and
Wood
,
R. J.
,
2016
, “
An Integrated Design and Fabrication Strategy for Entirely Soft, Autonomous Robots
,”
Nature
,
536
(
7617
), pp.
451
455
.
36.
LeBlanc
,
K. J.
,
Niemi
,
S. R.
,
Bennett
,
A. I.
,
Harris
,
K. L.
,
Schulze
,
K. D.
,
Gregory Sawyer
,
W.
,
Taylor
,
C.
, and
Angelini
,
T. E.
,
2016
, “
Stability of High Speed 3D Printing in Liquid-Like Solids
,”
ACS Biomater. Sci. Eng.
,
2
(
10
), pp.
1796
1799
.
37.
Bhattacharjee
,
T.
,
Zehnder
,
S. M.
,
Rowe
,
K. G.
,
Jain
,
S.
,
Nixon
,
R. M.
,
Gregory Sawyer
,
W.
, and
Angelini
,
T. E.
,
2015
, “
Writing in the Granular Gel Medium
,”
Sci. Adv.
,
1
(
8
), p.
e1500655
.
38.
Prud'homme
,
R. K.
,
Wu
,
G.
, and
Schneider
,
D. K.
,
1996
, “
Structure and Rheology Studies of Poly (Oxyethylene-Oxypropylene-Oxyethylene) Aqueous Solution
,”
Langmuir
,
12
(
20
), pp.
4651
4659
.
39.
Jiang
,
J.
,
Christian
,
B.
,
Li
,
C.
,
Li
,
J.
,
Lin
,
M. Y.
,
Colby
,
R. H.
,
Rafailovich
,
M. H.
, and
Sokolov
,
J. C.
,
2007
, “
Shear-Induced Layered Structure of Polymeric Micelles by SANS
,”
Macromolecules
,
40
(
11
), pp.
4016
4022
.
40.
Rhee
,
S. W.
,
Taylor
,
A. M.
,
Tu
,
C. H.
,
Cribbs
,
D. H.
,
Cotman
,
C. W.
, and
Jeon
,
N. L.
,
2005
, “
Patterned Cell Culture Inside Microfluidic Devices
,”
Lab Chip
,
5
(
1
), pp.
102
107
.
41.
Warkiani
,
M. E.
,
Guan
,
G.
,
Luan
,
K. B.
,
Lee
,
W. C.
,
Bhagat
,
A. A. S.
,
Kant Chaudhuri
,
P.
,
Tan
,
D. S.-W.
, et al
,
2014
, “
Slanted Spiral Microfluidics for the Ultra-Fast, Label-Free Isolation of Circulating Tumor Cells
,”
Lab Chip
,
14
(
1
), pp.
128
137
.
You do not currently have access to this content.