Abstract

Aiming at the shortcomings of the existing fluid polishing methods such as low abrasive utilization rate and high equipment energy consumption, a new method of pulsating air jet polishing (PAJP) is proposed in this article. In this article, the force on the abrasive in the turbulent state is analyzed based on the micro model of near-wall flow field. Based on the realizable k-ɛ turbulence model and mixture multiphase model, the gas–liquid–solid flow field is simulated numerically. The numerical simulation results reveal the variation law of the velocity field and the pressure field inside the flow field, and the accuracy of the simulation model has been verified by polishing experiments. The effects of jet pressure, jet angle, jet distance, and abrasive concentration on the removal depth and surface roughness of titanium alloys are analyzed by a combination of simulation and experiment, and the process parameters of PAJP are optimized.

References

1.
Fähnle
,
O. W.
,
Brug
,
H. V.
, and
Frankena
,
H. J.
,
1998
, “
Fluid Jet Polishing of Optical Surface
,”
Appl. Opt.
,
37
(
28
), pp.
6771
6773
.
2.
Booij
,
S. M.
,
Braat
,
M. J.
, and
Fähnle
,
O. W.
,
2002
, “
Nanometer Deep Shaping With Fluid Jet Polishing
,”
Opt. Eng.
,
41
(
8
), pp.
1926
1931
.
3.
Horiuchi
,
O.
,
Ikeno
,
J.
,
Shibutani
,
H.
,
Suzuki
,
H.
, and
Mizukami
,
Y.
,
2007
, “
Nano-abrasion Machining of Brittle Materials and Its Application to Corrective Figuring
,”
Precis. Eng.
,
31
(
1
), pp.
47
54
.
4.
Fang
,
H.
,
Guo
,
P. J.
, and
Yu
,
J. C.
,
2006
, “
Surface Roughness and Material Removal in Fluid Jet Polishing
,”
Appl. Opt.
,
45
(
17
), pp.
4012
4019
.
5.
Shi
,
C. Y.
,
Yuan
,
J. H.
,
Wu
,
F.
,
Hou
,
X.
, and
Wan
,
Y. J.
,
2010
, “
Material Removal Model of Vertical Impinging in Fluid Jet Polishing
,”
Chin. Opt. Lett.
,
8
(
3
), pp.
323
325
.
6.
Narayanan
,
C.
,
Balz
,
R.
,
Weiss
,
D. A.
, and
Heiniger
,
K. C.
,
2013
, “
Modelling of Abrasive Particle Energy in Water Jet Machining
,”
J. Mater. Process. Technol.
,
213
(
12
), pp.
2201
2210
.
7.
Hou
,
R.
,
Huang
,
C.
, and
Zhu
,
H.
,
2014
, “
Numerical Simulation Ultrahigh Waterjet (WJ) Flow Field With the High-Frequency Velocity Vibration at the Nozzle Inlet
,”
Int. J. Adv. Manuf. Technol.
,
71
(
5–8
), pp.
1087
1092
.
8.
Anand
,
B. S. K. P.
, and
Ramachandran
,
S.
,
2017
, “
Optimization of Profile and Material of Abrasive Water Jet Nozzle
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
197
(
1
), p.
012003
.
9.
Beaucamp
,
A.
,
Namba
,
Y.
,
Messelink
,
W.
,
Walker
,
D.
,
Charlton
,
D.
, and
Freeman
,
R.
,
2014
, “
Surface Integrity of Fluid Jet Polished Tungsten Carbide
,”
Procedia CIRP
,
13
, pp.
377
381
.
10.
Loc
,
P. H.
,
2013
, “
Investigation of Optimal Air-Driving Fluid Jet Polishing Parameters for the Surface Finish of N-BK7 Optical Glass
,”
ASME J. Manuf. Sci. Eng.
,
135
(
1
), p.
011015
.
11.
Tsai
,
F. C.
,
Yan
,
B. H.
,
Kuan
,
C. Y.
, and
Huang
,
F. Y.
,
2008
, “
A Taguchi and Experimental Investigation Into the Optimal Processing Conditions for the Abrasive Jet Polishing of SKD61 Mold Steel
,”
Int. J. Mach. Tool. Manu.
,
48
(
7–8
), pp.
932
945
.
12.
Yu
,
J.
,
Luo
,
X.
,
Wang
,
B.
,
Wu
,
S.
, and
Wang
,
J.
,
2021
, “
Analysis of Gas-Liquid-Solid Three-Phase Flows in Hydrocyclones Through a Coupled Method of VOF and DEM
,”
ASME J. Fluids Eng.
,
135
(
11
), p.
111402
.
13.
Ge
,
M.
,
Ji
,
S. M.
,
Tan
,
D. P.
, and
Cao
,
H. Q.
,
2021
, “
Erosion Analysis and Experimental Research of Gas-Liquid-Solid Soft Abrasive Flow Polishing Based on Cavitation Effects
,”
Int. J. Adv. Manuf. Technol.
,
114
(
11
), pp.
3419
3436
.
14.
Liu
,
X. X.
,
Aramaki
,
Y.
,
Guo
,
L. C.
, and
Morita
,
K.
,
2015
, “
Numerical Simulation of Gas–Liquid–Solid Three-Phase Flow Using Particle Methods
,”
J. Nucl. Sci. Technol.
,
52
(
12
), pp.
1480
1489
.
15.
Cerminara
,
M.
,
Esposti Ongaro
,
T.
, and
Carlo Berselli
,
L.
,
2014
, “
A Fast Eulerian Multiphase Flow Model for Volcanic Ash Plumes: Turbulence, Heat Transfer and Particle Non-Equilibrium Dynamics
,”
Egu General Assembly Conference
,
May 2014
. https://ui.adsabs.harvard.edu/abs/2014EGUGA..1613975C
16.
Li
,
Y.
,
Zhang
,
J. P.
, and
Fan
,
L. S.
,
1999
, “
Numerical Simulation of Gas-Liquid-Solid Fluidization Systems Using a Combined CFD-VOF-DPM Method: Bubble Wake Behavior
,”
Chem. Eng. Sci.
,
54
(
21
), pp.
5101
5107
.
17.
Bourloutski
,
E.
, and
Sommerfeld
,
M.
,
2004
, “Euler/Lagrange Calculations of Gas-Liquid-Solid-Flows in Bubble Columns with Phase Interaction,”
Bubbly Flows
,
M.
Sommerfeld
, ed.,
Springer
,
Berlin/Heidelberg
, pp.
243
259
.
You do not currently have access to this content.