Abstract

Skeleton curve-guided five-axis sweep scanning is an emerging surface inspection technique with marvelous inspection efficiency. The precondition of applying such a technique to a complex surface is to extract the skeleton curves of a two-manifold surface associated with partitioning the surface into compact surfaces. However, the work on extracting skeletons of two-manifold triangle mesh surfaces is scarce, as existing skeletonization methods mostly focus on either 2D planar shapes or 3D solid shapes. In this paper, we present a new approach to extract the skeletons on a two-manifold triangle mesh with boundaries. The skeletons are formed in the most intuitive manner of wave front propagation which is based on computing the initial value problem of geodesics on a triangle mesh. The step-length of wave front propagation is adaptively controlled to guarantee the appropriate density of skeleton points for having good connectivity. Experiments show that, as a direct application of the proposed skeleton generation and its associated surface partitioning result, the five-axis sweep scanning path of complex free-form surface can be generated conveniently. Experimental results also validate that the computation of our proposed approach is simpler and faster than the state-of-the-art geodesic Voronoi diagram (GVD) method when most of the two-manifold triangle mesh is nearly planar. Additionally, the augmented parameter used for tracing the wave front’s geodesic propagation information is helpful for the skeleton-based surface partition, which is necessary for skeleton curve-guided five-axis sweep scanning.

References

1.
Zhou
,
Z.
,
Zhang
,
Y.
, and
Tang
,
K.
,
2017
, “
Sweep Scan Path Planning for Efficient Freeform Surface Inspection on Five-Axis CMM
,”
Comput.-Aided Des.
,
77
, pp.
1
17
.
2.
Hu
,
P.
,
Zhou
,
H.
,
Chen
,
J.
,
Lee
,
C.
,
Tang
,
K.
,
Yang
,
J.
, and
Shen
,
S.
,
2018
, “
Automatic Generation of Efficient and Interference-Free Five-Axis Scanning Path for Free-Form Surface Inspection
,”
Comput. Aided Des.
,
98
, pp.
24
38
.
3.
Shen
,
Y.
,
Zhang
,
W.
,
Zhu
,
L.
, and
Zhang
,
Y.
,
2021
, “
An Image-Based Algorithm for Generating Smooth and Interference-Free Five-Axis Sweep Scanning Path
,”
Rob. Comput. Integr. Manuf.
,
71
, p.
102159
.
4.
Siddiqi
,
K.
, and
Pizer
,
S.
,
2008
,
Medial Representations: Mathematics, Algorithms and Applications
,
Springer Science & Business Media
,
London
, pp.
1
456
.
5.
Tagliasacchi
,
A.
,
Alhashim
,
I.
,
Olson
,
M.
, and
Zhang
,
H.
,
2012
,
Mean Curvature Skeletons
, Vol.
31
,
Computer Graphics Forum
, pp.
1735
1744
.
6.
Yoshizawa
,
S.
,
Belyaev
,
A. G.
, and
Seidel
,
H.-P.
,
2003
, “
Free-Form Skeleton-Driven Mesh Deformations
,”
Proceedings of the Eighth ACM Symposium on Solid Modeling and Applications
,
Seattle, WA
, pp.
247
253
.
7.
Rémy
,
É
, and
Thiel
,
É
,
2002
, “
Medial Axis for Chamfer Distances: Computing Look-Up Tables and Neighbourhoods in 2D or 3D
,”
Pattern Recognit. Lett.
,
23
(
6
), pp.
649
661
.
8.
Itoh
,
J.-I.
, and
Vîlcu
,
C.
,
2012
, “
Cut Locus Structures on Graphs
,”
Discrete Math.
,
312
(
3
), pp.
524
531
.
9.
Sebastian
,
T. B.
, and
Kimia
,
B. B.
,
2005
, “
Curves vs. Skeletons in Object Recognition
,”
Signal Processing
,
85
(
2
), pp.
247
263
.
10.
Saha
,
P. K.
,
Borgefors
,
G.
, and
di Baja
,
G. S.
,
2016
, “
A Survey on Skeletonization Algorithms and Their Applications
,”
Pattern Recognit. Lett.
,
76
, pp.
3
12
.
11.
Gold
,
C.
, “
Crust and Anti-Crust: A One-Step Boundary and Skeleton Extraction Algorithm
,”
ACM 13
,
Quebec City
,
June
, pp.
189
196
.
12.
Kuipers
,
T.
,
Doubrovski
,
E. L.
,
Wu
,
J.
, and
Wang
,
C. C.
,
2020
, “
A Framework for Adaptive Width Control of Dense Contour-Parallel Toolpaths in Fused Deposition Modeling
,”
Comput. Aided Des.
,
128
, p.
102907
.
13.
Dimitrov
,
P.
,
Phillips
,
C.
, and
Siddiqi
,
K.
,
2000
, “
Robust and Efficient Skeletal Graphs
,”
Proceedings IEEE Conference on Computer Vision and Pattern Recognition
,
Hilton Head, SC
,
June 15
, pp.
417
423
.
14.
Spitzner
,
M.
, and
Gonzalez
,
R.
,
2015
, “
Shape Peeling for Improved Image Skeleton Stability
,”
IEEE International Conference on Acoustics, Speech and Signal Processing
,
South Brisbane, QLD, Australia
,
Apr. 19–24
, pp. 1508–\1512.
15.
Scheeve
,
M.
, and
Westra
,
K.
, “
Performance Assessment of the Augmented Fast Marching Method for Two-Dimensional Skeletonization
,”
SC@ RUG 2011 Proceedings
,
Netherlands
,
June 6
, p.
36
.
16.
Rausch
,
T.
,
Wolter
,
F.-E.
, and
Sniehotta
,
O.
,
1997
, “
Computation of Medial Curves on Surfaces
,”
Math. Surf.
,
7
, pp.
43
68
.
17.
Liu
,
Y.-J.
,
2015
, “
Semi-continuity of Skeletons in Two-Manifold and Discrete Voronoi Approximation
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
37
(
9
), pp.
1938
1944
.
18.
Liu
,
Y.-J.
,
Chen
,
Z.
, and
Tang
,
K.
,
2011
, “
Construction of Iso-Contours, Bisectors, and Voronoi Diagrams on Triangulated Surfaces
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
33
(
8
), pp.
1502
1517
.
19.
Liu
,
Y.-J.
,
2013
, “
Exact Geodesic Metric in 2-Manifold Triangle Meshes Using Edge-Based Data Structures
,”
Comput. Aided Des.
,
45
(
3
), pp.
695
704
.
20.
Moodleah
,
S.
,
Bohez
,
E.
, and
Makhanov
,
S.
,
2016
, “
Five-Axis Machining of STL Surfaces by Adaptive Curvilinear Toolpaths
,”
Int. J. Prod. Res.
,
54
(
24
), pp.
7296
7329
.
21.
Ebert
,
D.
,
Brunet
,
P.
, and
Navazo
,
I.
,
2002
, “
An Augmented Fast Marching Method for Computing Skeletons and Centerlines
,”
Proceedings of the Symposium on Data Visualisation
,
Barcelona, Spain
,
May
, pp.
251
258
.
22.
Bose
,
P.
,
Maheshwari
,
A.
,
Shu
,
C.
, and
Wuhrer
,
S.
,
2011
, “
A Survey of Geodesic Paths on 3D Surfaces
,”
Comput. Geom.
,
44
(
9
), pp.
486
498
.
23.
Kimmel
,
R.
, and
Sethian
,
J. A.
,
1998
, “
Computing Geodesic Paths on Manifolds
,”
Proc. Natl. Acad. Sci. U. S. A.
,
95
(
15
), pp.
8431
8435
.
24.
Lee
,
H.
,
Kim
,
L.
,
Meyer
,
M.
, and
Desbrun
,
M.
,
2001
, “Meshes on Fire,”
Computer Animation and Simulation 2001
,
Springer
, pp.
75
84
.
25.
Polthier
,
K.
, and
Schmies
,
M.
,
2006
, “
Straightest Geodesics on Polyhedral Surfaces
,”
ACM SIGGRAPH 2006
,
Boston, MA
,
July
.
26.
Cheng
,
P.
,
Miao
,
C.
,
Liu
,
Y.-J.
,
Tu
,
C.
, and
He
,
Y.
,
2016
, “
Solving the Initial Value Problem of Discrete Geodesics
,”
Comput.-Aided Des.
,
70
, pp.
144
152
.
27.
Polthier
,
K.
, and
Schmies
,
M.
,
1999
, “
Geodesic Flow on Polyhedral Surfaces
,”
IEEE TCVG Symposium on Visualization
,
London
, pp.
179
188
.
28.
Irons
,
M. L.
,
2005
, “
The Curvature and Geodesics of the Torus
,” Retrieved January, 20, p.
2008
.
29.
Petitjean
,
S.
,
2002
, “
A Survey of Methods for Recovering Quadrics in Triangle Meshes
,”
ACM Comput. Surv. (CSUR)
,
34
(
2
), pp.
211
262
.
30.
Bailey
,
D. H.
,
2005
, “
High-Precision Floating-Point Arithmetic in Scientific Computation
,”
Comput. Sci. Eng.
,
7
(
3
), pp.
54
61
.
31.
Bernstein
,
G.
, and
Fussell
,
D.
,
2009
, “
Fast, Exact, Linear Booleans
,”
Proceedings of the Symposium on Geometry Processing
,
Berlin, Germany
, pp.
1269
1278
.
32.
Dey
,
T. K.
, and
Sun
,
J.
,
2006
, “
Defining and computing curve-skeletons with medial geodesic function
,”
Proceedings of the Fourth Eurographics Symposium on Geometry Processing
,
Cagliari, Sardinia, Italy
, pp.
143
152
.
33.
Chapra
,
S. C.
, and
Canale
,
R. P.
,
2011
,
Numerical Methods for Engineers
,
McGraw-Hill
,
New York
.
34.
Zhang
,
Y.
,
Chen
,
K.
,
Guo
,
P.
,
Li
,
F.
,
Zhu
,
J.
, and
Zhu
,
L.-M.
,
2021
, “
Profile Tracking for Multi-Axis Ultrasonic Inspection of Model-Unknown Free-Form Surfaces Based on Energy Concentration
,”
Measurement
,
172
, p.
108867
.
35.
Zhang
,
Y.
,
Zhou
,
Z.
, and
Tang
,
K.
,
2018
, “
Sweep Scan Path Planning for Five-Axis Inspection of Free-Form Surfaces
,”
Rob. Comput. Integr. Manuf.
,
49
, pp.
335
348
.
36.
Zhou
,
H.
,
Song
,
M.
, and
Pedrycz
,
W.
,
2018
, “
A Comparative Study of Improved GA and PSO in Solving Multiple Traveling Salesmen Problem
,”
Appl. Soft Comput.
,
64
, pp.
564
580
.
You do not currently have access to this content.