Abstract

This study provides a preform design approach for uniform strain distribution in forging products based on a convolutional neural network (CNN). The appropriate preform design prevents underfill problems by improving the material flow inside forging dies and achieving a uniform strain distribution in forging products. The forging deformation process and mechanical properties are improved with a uniform strain distribution. The forging and strain distribution results are analyzed through rigid–plastic finite element forging simulations with different initial geometries. The simulation data are fed into the CNN model as an input array, from which the geometric characteristics are extracted by convolution operations with filters (weight array). The extracted features are linked to the considered initial shapes, which are input into the CNN model as an output array. The presented model derives the preform shape for a target forging with uniform strain distributions using the training weights. According to the training database, the proposed design method can be applied to different forging geometries without any iterations. By creating a number of low-level CNN (LC) models based on the training data, the efficiency of the preform design can be improved. The best preform among the derived preform candidates is chosen by comparing the forging results. Compared with previous studies using the same design criteria, the proposed model predicted the preform with a strain distribution improved by 16.3–38.4%.

References

1.
Zhuang
,
W.
,
Hua
,
L.
,
Han
,
X.
, and
Zheng
,
F.
,
2017
, “
Design and Hot Forging Manufacturing of Non-Circular Spur Bevel Gear
,”
Int. J. Mech. Sci.
,
133
, pp.
129
146
.
2.
Luis Pérez
,
C. J.
,
Salcedo Pérez
,
D.
, and
Puertas Arbizu
,
I.
,
2014
, “
Design and Mechanical Property Analysis of Ultrafine Grained Gears From AA5083 Previously Processed by Equal Channel Angular Pressing and Isothermal Forging
,”
Mater. Des.
,
63
, pp.
126
135
.
3.
Zhao
,
X.
,
Zhao
,
G.
,
Wang
,
G.
, and
Wang
,
T.
,
2002
, “
Preform Die Shape Design for Uniformity of Deformation in Forging Based on Preform Sensitivity Analysis
,”
J. Mater. Process. Technol.
,
128
(
1–3
), pp.
25
32
.
4.
Guan
,
J.
,
Wang
,
G. C.
,
Guo
,
T.
,
Song
,
L. B.
, and
Zhao
,
G. Q.
,
2009
, “
The Microstructure Optimization of H-Shape Forgings Based on Preforming Die Design
,”
Mater. Sci. Eng. A
,
499
(
1–2
), pp.
304
308
.
5.
Jiang
,
X. Q.
,
Fan
,
X. G.
,
Zhan
,
M.
,
Wang
,
R.
, and
Liang
,
Y. F.
,
2021
, “
Microstructure Dependent Strain Localization During Primary Hot Working of TA15 Titanium Alloy: Behavior and Mechanism
,”
Mater. Des.
,
203
, p.
109589
.
6.
Lu
,
B.
,
Ou
,
H.
,
Armstrong
,
C. G.
, and
Rennie
,
A.
,
2009
, “
3D Die Shape Optimisation for Net-Shape Forging of Aerofoil Blades
,”
Mater. Des.
,
30
(
7
), pp.
2490
2500
.
7.
Bruchanov
,
A. N.
, and
Rebelski
,
S. K.
,
1955
,
Closed Die Forging and Warmpressing
,
VEB Verlag Tcchnik
,
Berlin
.
8.
Yu
,
G. B.
, and
Dean
,
T. A.
,
1985
, “
A Practical Computer-Aided Approach to Mould Design for Axisymmetric Forging Die Cavities
,”
Int. J. Mach. Tool Des. Res.
,
25
(
1
), pp.
1
13
.
9.
Biswas
,
S. K.
, and
Knight
,
W. A.
,
1975
, “
Preform Design for Closed Die Forgings: Experimental Basis for Computer Aided Design
,”
Int. J. Mach. Tool Des. Res.
,
15
(
3
), pp.
179
193
.
10.
Vemuri
,
K. R.
,
Oh
,
S. I.
, and
Altan
,
T.
,
1989
, “
BID: A Knowledge-Based System to Automate Blocker Design
,”
Int. J. Mach. Tools Manuf.
,
29
(
4
), pp.
505
518
.
11.
Caporalli
,
Â
,
Gileno
,
L. A.
, and
Button
,
S. T.
,
1998
, “
Expert System for Hot Forging Design
,”
J. Mater. Process. Technol.
,
80–81
, pp.
131
135
.
12.
Kim
,
C.
, and
Park
,
C. W.
,
2006
, “
Development of an Expert System for Cold Forging of Axisymmetric Product
,”
Int. J. Adv. Manuf. Technol.
,
29
(
5
), pp.
459
474
.
13.
Park
,
J. J.
,
Rebelo
,
N.
, and
Kobayashi
,
S.
,
1983
, “
A New Approach to Preform Design in Metal Forming With the Finite Element Method
,”
Int. J. Mach. Tool Des. Res.
,
23
(
1
), pp.
71
79
.
14.
Kim
,
N.
, and
Kobayashi
,
S.
,
1990
, “
Preform Design in H-Shaped Cross Sectional Axisymmetric Forging by the Finite Element Method
,”
Int. J. Mach. Tools Manuf.
,
30
(
2
), pp.
243
268
.
15.
Biglari
,
F.
,
O’Dowd
,
N.
, and
Fenner
,
R.
,
1998
, “
Optimum Design of Forging Dies Using Fuzzy Logic in Conjunction With the Backward Deformation Method
,”
Int. J. Mach. Tools Manuf.
,
38
(
8
), pp.
981
1000
.
16.
Gao
,
T.
,
Yang
,
H.
, and
Yuli
,
L.
,
2008
, “
Influence of Dynamic Boundary Conditions on Preform Design for Deformation Uniformity in Backward Simulation
,”
J. Mater. Process. Technol.
,
197
(
1–3
), pp.
255
260
.
17.
Badrinarayanan
,
S.
, and
Zabaras
,
N.
,
1996
, “
A Sensitivity Analysis for the Optimal Design of Metal-Forming Processes
,”
Comput. Methods Appl. Mech. Eng.
,
129
(
4
), pp.
319
348
.
18.
Zhao
,
G.
,
Wright
,
E.
, and
Grandhi
,
R. V.
,
1997
, “
Sensitivity Analysis Based Preform Die Shape Design for Net-Shape Forging
,”
Int. J. Mach. Tools Manuf.
,
37
(
9
), pp.
1251
1271
.
19.
Gao
,
Z. Y.
, and
Grandhi
,
R. V.
,
1999
, “
Sensitivity Analysis and Shape Optimization for Preform Design in Thermo-Mechanical Coupled Analysis
,”
Int. J. Numer. Methods Eng.
,
45
(
10
), pp.
1349
1373
.
20.
Roy
,
R.
,
Chodnikiewicz
,
K.
, and
Balendra
,
R.
,
1994
, “
Interpolation of Forging Preform Shapes Using Neural Networks
,”
J. Mater. Process. Technol.
,
45
(
1–4
), pp.
695
702
.
21.
Ko
,
D.-C.
,
Kim
,
D.-H.
, and
Kim
,
B.-M.
,
1999
, “
Application of Artificial Neural Network and Taguchi Method to Preform Design in Metal Forming Considering Workability
,”
Int. J. Mach. Tools Manuf.
,
39
(
5
), pp.
771
785
.
22.
Lee
,
S. R.
,
Lee
,
Y. K.
,
Park
,
C. H.
, and
Yang
,
D. Y.
,
2002
, “
A New Method of Preform Design in Hot Forging by Using Electric Field Theory
,”
Int. J. Mech. Sci.
,
44
(
4
), pp.
773
792
.
23.
Tang
,
Y.-C.
,
Zhou
,
X.-H.
, and
Chen
,
J.
,
2008
, “
Preform Tool Shape Optimization and Redesign Based on Neural Network Response Surface Methodology
,”
Finite Elem. Anal. Des.
,
44
(
8
), pp.
462
471
.
24.
Lu
,
B.
,
Ou
,
H.
, and
Cui
,
Z. S.
,
2011
, “
Shape Optimisation of Preform Design for Precision Close-Die Forging
,”
Struct. Multidiscip. Optim.
,
44
(
6
), pp.
785
796
.
25.
Shao
,
Y.
,
Lu
,
B.
,
Ou
,
H.
,
Ren
,
F.
, and
Chen
,
J.
,
2014
, “
Evolutionary Forging Preform Design Optimization Using Strain-Based Criterion
,”
Int. J. Adv. Manuf. Technol.
,
71
(
1–4
), pp.
69
80
.
26.
Ngo
,
N. V.
,
Hsu
,
Q. C.
,
Li
,
W. H.
, and
Huang
,
P. J.
,
2017
, “
Optimizing Design of Two-Dimensional Forging Preform by Bi-Directional Evolutionary Structural Optimization Method
,”
Procedia Eng.
,
207
, pp.
520
525
.
27.
Roy
,
S.
,
Ghosh
,
S.
, and
Shivpuri
,
R.
,
1997
, “
A New Approach to Optimal Design of Multi-Stage Metal Forming Processes With Micro Genetic Algorithms
,”
Int. J. Mach. Tools Manuf.
,
37
(
1
), pp.
29
44
.
28.
Kampen
,
D.
,
Richter
,
J.
,
Blohm
,
T.
,
Knust
,
J.
,
Langner
,
J.
,
Stonis
,
M.
, and
Behrens
,
B.-A.
,
2020
, “
Design of a Genetic Algorithm to Preform Optimization for Hot Forging Processes
,”
Int. J. Mater. Form.
,
13
(
1
), pp.
77
89
.
29.
Repalle
,
J.
, and
Grandhi
,
R. V.
,
2005
, “
Reliability-Based Preform Shape Design in Forging
,”
Commun. Numer. Methods Eng.
,
21
(
11
), pp.
607
617
.
30.
Sedighi
,
M.
, and
Tokmechi
,
S.
,
2008
, “
A New Approach to Preform Design in Forging Process of Complex Parts
,”
J. Mater. Process. Technol.
,
197
(
1–3
), pp.
314
324
.
31.
Lee
,
S.
,
Quagliato
,
L.
,
Park
,
D.
,
Kwon
,
I.
,
Sun
,
J.
, and
Kim
,
N.
,
2021
, “
A New Approach to Preform Design in Metal Forging Processes Based on the Convolution Neural Network
,”
Appl. Sci.
,
11
(
17
), p.
7948
.
32.
Krizhevsky
,
A.
,
Sutskever
,
I.
, and
Hinton
,
G. E.
,
2017
, “
ImageNet Classification With Deep Convolutional Neural Networks
,”
Commun. ACM
,
60
(
6
), pp.
84
90
.
33.
Yang
,
H.
,
Ma
,
X.
,
Jiao
,
F.
, and
Fang
,
Z.
,
2019
, “
Preform Optimal Design of H-Shaped Forging Based on Bi-Directional Evolutionary Structural Optimization
,”
Int. J. Adv. Manuf. Technol.
,
101
(
1–4
), pp.
1
8
.
34.
Ronneberger
,
O.
,
Fischer
,
P.
, and
Brox
,
T.
,
2015
, “U-Net: Convolutional Networks for Biomedical Image Segmentation,”
Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015
,
Springer International Publishing
,
Cham
, pp.
234
241
.
35.
Kingma
,
D. P.
, and
Ba
,
J.
,
2014
, “
Adam: A Method for Stochastic Optimization
,”
3rd International Conference on Learning Representations
,
San Diego, CA
.
36.
Carass
,
A.
,
Roy
,
S.
,
Gherman
,
A.
,
Reinhold
,
J. C.
,
Jesson
,
A.
,
Arbel
,
T.
,
Maier
,
O.
, et al
,
2020
, “
Evaluating White Matter Lesion Segmentations With Refined Sørensen-Dice Analysis
,”
Sci. Rep.
,
10
(
1
), p.
8242
.
37.
Shorten
,
C.
, and
Khoshgoftaar
,
T. M.
,
2019
, “
A Survey on Image Data Augmentation for Deep Learning
,”
J. Big Data
,
6
(
1
), p.
60
.
38.
Vinogradova
,
K.
,
Dibrov
,
A.
, and
Myers
,
G.
,
2020
, “
Towards Interpretable Semantic Segmentation via Gradient-Weighted Class Activation Mapping (Student Abstract)
,”
Proc. AAAI Conf. Artif. Intell.
,
34
(
10
), pp.
13943
13944
.
39.
Kang
,
B.-S.
,
Kim
,
N.
, and
Kobayashi
,
S.
,
1990
, “
Computer-Aided Preform Design in Forging of an Airfoil Section Blade
,”
Int. J. Mach. Tools Manuf.
,
30
(
1
), pp.
43
52
.
40.
Ou
,
H.
, and
Balendra
,
R.
,
1998
, “
Preform Design for Forging of Aerofoil Sections Using FE Simulation
,”
J. Mater. Process. Technol.
,
80–81
, pp.
144
148
.
41.
Bergstra
,
J.
, and
Bengio
,
Y.
,
2012
, “
Random Search for Hyper-Parameter Optimization
,”
J. Mach. Learn. Res.
,
13
(
2
), pp.
281
305
.
42.
Mockus
,
J.
,
1994
, “
Application of Bayesian Approach to Numerical Methods of Global and Stochastic Optimization
,”
J. Glob. Optim.
,
4
(
4
), pp.
347
365
.
43.
Liu
,
C.
,
Xu
,
W.
,
Wang
,
Y.
, and
Liu
,
M.
,
2021
, “
Optimal Design of Preform Shape Based on EFA-FEM-GA Integrated Methodology
,”
Int. J. Mater. Form.
,
14
(
5
), pp.
1043
1056
.
You do not currently have access to this content.