Abstract

Existing various constructed models of stamping provide great support to develop the forming quality improvement and energy-saving strategies. However, the immutable model cannot reflect the actual states of the process as the wear of the mold goes, and the inaccuracy model will lead to the failure of the strategies. To solve this problem, a Digital Twin-driven modeling method considering mold wear for stamping was proposed in this paper. The model of punch force and forming quality considering the coefficients that will vary with the states of mold wear was first built in the virtual space. The real-time punch force was acquired and inputted to the virtual space, and it was then compared with the punch force obtained by the Digital Twin model for monitoring the mold wear. If the difference of punch force is greater than the threshold, the friction coefficients update starts via the Particle Swarm Optimization with Differential Evolution (PSO-DE) algorithm. To validate the effectiveness, the method was applied in the process to form a clutch shell, and the results show that the maximum deviation of the punch force between the updated Digital Twin model and the measured value does not exceed 5%. Optimization results in the application show a 14.35% reduction in the maximum thinning ratio of the stamping part and an 8.9% reduction in the process energy. The Digital Twin-driven modeling assists in quality improvement and energy consumption reduction in sheet metal forming.

References

1.
Cao
,
J.
,
Brinksmeier
,
E.
,
Fu
,
M.
,
Gao
,
R. X.
,
Liang
,
B.
,
Merklein
,
M.
,
Schmidt
,
M.
, and
Yanagimoto
,
J.
,
2019
, “
Manufacturing of Advanced Smart Tooling for Metal Forming
,”
CIRP Ann. Manuf. Technol.
,
68
(
2
), pp.
605
628
.
2.
Wang
,
H.
,
Ye
,
F.
,
Chen
,
L.
, and
Li
,
E.
,
2017
, “
Sheet Metal Forming Optimization by Using Surrogate Modeling Techniques
,”
Chin. J. Mech. Eng.
,
30
(
1
), pp.
22
36
.
3.
Gao
,
M.
,
Huang
,
H.
,
Wang
,
Q.
,
Liu
,
Z.
, and
Li
,
X.
,
2018
, “
Energy Consumption Analysis on Sheet Metal Forming: Focusing on the Deep Drawing Processes
,”
Int. J. Adv. Manuf. Technol.
,
96
(
9
), pp.
3893
3907
.
4.
Shanbhag
,
V. V.
,
Rolfe
,
B. F.
,
Arunachalam
,
N.
, and
Pereira
,
M. P.
,
2018
, “
Investigating Galling Wear Behaviour in Sheet Metal Stamping Using Acoustic Emissions
,”
Wear
,
414–415
, pp.
31
42
.
5.
Zabala
,
A.
,
de Argandoña
,
E. S.
,
Cañizares
,
D.
,
Llavori
,
I.
,
Otegi
,
N.
, and
Mendiguren
,
J.
,
2022
, “
Numerical Study of Advanced Friction Modelling for Sheet Metal Forming: Influence of the Die Local Roughness
,”
Tribol. Int.
,
165
, p.
107259
.
6.
Liu
,
M.
,
Fang
,
S.
,
Dong
,
H.
, and
Xu
,
C.
,
2021
, “
Review of Digital Twin About Concepts, Technologies, and Industrial Applications
,”
J. Manuf. Syst.
,
58
(
Part B
), pp.
346
361
.
7.
Glaessgen
,
E.
, and
Stargel
,
D.
,
2012
, “
The Digital Twin Paradigm for Future NASA and U.S. Air Force Vehicles
,”
Proceedings of the 53rd AIAA Structures, Structural Dynamics, and Materials Conference
,
Honolulu, HI
,
Apr. 23
, p.
1818
.
8.
Tao
,
F.
,
Sui
,
F.
,
Liu
,
A.
,
Qi
,
Q.
,
Zhang
,
M.
,
Song
,
B.
,
Guo
,
Z.
,
Lu
,
S. C. Y.
, and
Nee
,
A. Y. C.
,
2019
, “
Digital Twin-Driven Product Design Framework
,”
Int. J. Prod. Res.
,
57
(
12
), pp.
3935
3953
.
9.
Tao
,
F.
,
Zhang
,
H.
,
Liu
,
A.
, and
Nee
,
A. Y. C.
,
2019
, “
Digital Twin in Industry: State-of-the-Art
,”
IEEE Trans. Ind. Inf.
,
15
(
4
), pp.
2405
2415
.
10.
Tao
,
F.
,
Qi
,
Q.
,
Wang
,
L.
, and
Nee
,
A. Y. C.
,
2019
, “
Digital Twins and Cyber–Physical Systems Toward Smart Manufacturing and Industry 4.0: Correlation and Comparison
,”
Engineering
,
5
(
4
), pp.
653
661
.
11.
Won
,
C.
,
Lee
,
S.
,
Seo
,
J.
,
Park
,
S. H.
, and
Yoon
,
J.
,
2018
, “
Stripping Failure of Punching Pin in GPa-Grade Steels
,”
Int. J. Adv. Manuf. Technol.
,
94
(
1
), pp.
73
83
.
12.
Zhang
,
L.
,
Zhang
,
W.
,
Zheng
,
M.
, and
Wang
,
B.
,
2021
, “
Continuous Stamping Simulation and Wear Analysis of Die Considering Milling Surface Topography
,”
Int. J. Adv. Manuf. Technol.
,
114
(
5
), pp.
1777
1785
.
13.
Wu
,
L.
,
Zhao
,
C.
,
Cao
,
M.
, and
Han
,
X.
,
2021
, “
Effect of Ultrasonic and low Frequency Vibrations on Friction Coefficient at Die Radius in Deep Drawing Process
,”
J. Manuf. Processes
,
71
, pp.
56
69
.
14.
Voss
,
B. M.
,
Pereira
,
M. P.
,
Rolfe
,
B. F.
, and
Doolan
,
M. C.
,
2017
, “
Using Stamping Punch Force Variation for the Identification of Changes in Lubrication and Wear Mechanism
,”
J. Phys. Conf. Ser.
,
896
, p.
012028
.
15.
Kubik
,
C.
,
Hohmann
,
J.
, and
Groche
,
P.
,
2021
, “
Exploitation of Force Displacement Curves in Blanking—Feature Engineering Beyond Defect Detection
,”
Int. J. Adv. Manuf. Technol.
,
113
(
1
), pp.
261
278
.
16.
Kubik
,
C.
,
Knauer
,
S. M.
, and
Groche
,
P.
,
2022
, “
Smart Sheet Metal Forming: Importance of Data Acquisition, Preprocessing and Transformation on the Performance of a Multiclass Support Vector Machine for Predicting Wear States During Blanking
,”
J. Intell. Manuf.
,
33
(
1
), pp.
259
282
.
17.
Qin
,
S.-J.
,
Gai
,
B.-B.
,
Kong
,
X.-H.
, and
Deng
,
C.
,
2015
, “
Analytical Solutions of Strain of Axisymmetric Curved Part in Sheet Metal Forming Process Using Direct Integral Method
,”
Int. J. Mech. Sci.
,
101–102
, pp.
49
58
.
18.
Li
,
L.
,
Huang
,
H.
,
Zhao
,
F.
,
Zou
,
X.
,
Mendis
,
G. P.
,
Luan
,
X.
,
Liu
,
Z.
, and
Sutherland
,
J. W.
,
2018
, “
Modeling and Analysis of the Process Energy for Cylindrical Drawing
,”
ASME J. Manuf. Sci. Eng.
,
141
(
2
), p.
021001
.
19.
Wu
,
P.
,
Wang
,
Y.
, and
Wan
,
P.
,
2019
, “
Study on Simulation of Stamping Process and Optimization of Process Parameters of Fender
,”
Adv. Mater. Sci. Eng.
,
2019
, p.
4081632
.
20.
Chen
,
P.
,
Liu
,
X.
,
Huang
,
M.
,
Shi
,
Z.
, and
Shan
,
B.
,
2019
, “
Numerical Simulation and Experimental Study on Tribological Properties of Stamping Die With Triangular Texture
,”
Tribol. Int.
,
132
, pp.
244
252
.
21.
Dou
,
S.
, and
Xia
,
J.
,
2019
, “
Analysis of Sheet Metal Forming (Stamping Process): A Study of the Variable Friction Coefficient on 5052 Aluminum Alloy
,”
Metals
,
9
(
8
), p.
853
.
22.
Hinchy
,
E. P.
,
Carcagno
,
C.
,
O’Dowd
,
N. P.
, and
McCarthy
,
C. T.
,
2020
, “
Using Finite Element Analysis to Develop a Digital Twin of a Manufacturing Bending Operation
,”
Procedia CIRP
,
93
, pp.
568
574
.
23.
Luo
,
W.
,
Hu
,
T.
,
Zhang
,
C.
, and
Wei
,
Y.
,
2019
, “
Digital Twin for CNC Machine Tool: Modeling and Using Strategy
,”
J. Ambient Intell. Humaniz. Comput.
,
10
(
3
), pp.
1129
1140
.
24.
Wei
,
Y.
,
Hu
,
T.
,
Zhou
,
T.
,
Ye
,
Y.
, and
Luo
,
W.
,
2021
, “
Consistency Retention Method for CNC Machine Tool Digital Twin Model
,”
J. Manuf. Syst.
,
58
, pp.
313
322
.
25.
Wang
,
J.
,
Ye
,
L.
,
Gao
,
R. X.
,
Li
,
C.
, and
Zhang
,
L.
,
2019
, “
Digital Twin for Rotating Machinery Fault Diagnosis in Smart Manufacturing
,”
Int. J. Prod. Res.
,
57
(
12
), pp.
3920
3934
.
26.
Li
,
W.
,
Rentemeister
,
M.
,
Badeda
,
J.
,
Jöst
,
D.
,
Schulte
,
D.
, and
Sauer
,
D. U.
,
2020
, “
Digital Twin for Battery Systems: Cloud Battery Management System with Online State-of-Charge and State-of-Health Estimation
,”
J. Energy Storage
,
30
, p.
101557
.
27.
Xie
,
Y.
,
Lian
,
K.
,
Liu
,
Q.
,
Zhang
,
C.
, and
Liu
,
H.
,
2021
, “
Digital Twin for Cutting Tool: Modeling, Application and Service Strategy
,”
J. Manuf. Syst.
,
58
, pp.
305
312
.
28.
Archard
,
1980
,
Wear Theory and Mechanisms
,
ASME
,
New York
.
29.
Bang
,
J.
,
Park
,
N.
,
Song
,
J.
,
Kim
,
H.-G.
,
Bae
,
G.
, and
Lee
,
M.-G.
,
2021
, “
Tool Wear Prediction in the Forming of Automotive DP980 Steel Sheet Using Statistical Sensitivity Analysis and Accelerated U-Bending Based Wear Test
,”
Metals
,
11
(
2
), p.
306
.
30.
Zhou
,
M.
,
Zhang
,
Y.
, and
Jin
,
S.
,
2015
, “
Dynamic Optimization of Heated oil Pipeline Operation Using PSO–DE Algorithm
,”
Measurement
,
59
, pp.
344
351
.
31.
Ludwik
,
P.
,
1909
,
Elemente der Technologischen Mechanik
,
Springer
,
Berlin
.
32.
Li
,
L.
,
Huang
,
H.
,
Zhao
,
F.
,
Zou
,
X.
,
Lu
,
Q.
,
Wang
,
Y.
,
Liu
,
Z.
, and
Sutherland
,
J. W.
,
2019
, “
Variations of Energy Demand With Process Parameters in Cylindrical Drawing of Stainless Steel
,”
ASME J. Manuf. Sci. Eng.
,
141
(
9
), p.
091002
.
33.
Jiang
,
Z.
,
Ding
,
Z.
,
Liu
,
Y.
,
Wang
,
Y.
,
Hu
,
X.
, and
Yang
,
Y.
,
2020
, “
A Data-Driven Based Decomposition–Integration Method for Remanufacturing Cost Prediction of End-of-Life Products
,”
Rob. Comput. Integr. Manuf.
,
61
, p.
101838
.
34.
Li
,
L.
,
Huang
,
H.
,
Zou
,
X.
,
Zhao
,
F.
,
Li
,
G.
, and
Liu
,
Z.
,
2021
, “
An Energy-Efficient Service-Oriented Energy Supplying System and Control for Multi-Machine in the Production Line
,”
Appl. Energy
,
286
, p.
116483
.
35.
Mechtool
, 2021, “
Friction Coefficients of Common used Materials
,” https://www.mechtool.cn/infoanddata/infoanddata_frictionfactor.html, Accessed November 7, 2021.
36.
Karupannasamy
,
D. K.
,
Hol
,
J.
,
de Rooij
,
M. B.
,
Meinders
,
T.
, and
Schipper
,
D. J.
,
2014
, “
A Friction Model for Loading and Reloading Effects in Deep Drawing Processes
,”
Wear
,
318
(
1
), pp.
27
39
.
37.
Zhao
,
X.
,
Li
,
C.
,
Chen
,
X.
,
Cui
,
J.
, and
Cao
,
B.
,
2021
, “
Data-Driven Cutting Parameters Optimization Method in Multiple Configurations Machining Process for Energy Consumption and Production Time Saving
,”
Int. J. Precis. Eng. Manf.-Green Technol.
,
9
(
3
), pp.
709
728
.
38.
Gao
,
M.
,
Wang
,
Q.
,
Li
,
L.
, and
Ma
,
Z.
,
2020
, “
Energy-Economizing Optimization of Magnesium Alloy Hot Stamping Process
,”
Processes
,
8
(
2
), p.
186
.
39.
Chen
,
X.
,
Li
,
C.
,
Yang
,
Q.
,
Tang
,
Y.
,
Li
,
L.
, and
Zhao
,
X.
,
2021
, “
Toward Energy Footprint Reduction of a Machining Process
,”
IEEE Trans. Autom. Sci. Eng.
,
19
(
2
), pp.
772
787
.
You do not currently have access to this content.